Blame view
egs/wsj/s5/steps/tfrnnlm/lstm_fast.py
11.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # Copyright (C) 2017 Intellisist, Inc. (Author: Hainan Xu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # this script trains a vanilla RNNLM with TensorFlow. # to call the script, do # python steps/tfrnnlm/lstm_fast.py --data_path=$datadir \ # --save_path=$savepath --vocab_path=$rnn.wordlist [--hidden-size=$size] # # One example recipe is at egs/ami/s5/local/tfrnnlm/run_vanilla_rnnlm.sh from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import inspect import time import numpy as np import tensorflow as tf import reader flags = tf.flags logging = tf.logging flags.DEFINE_integer("hidden_size", 200, "hidden dim of RNN") flags.DEFINE_string("data_path", None, "Where the training/test data is stored.") flags.DEFINE_string("vocab_path", None, "Where the wordlist file is stored.") flags.DEFINE_string("save_path", None, "Model output directory.") flags.DEFINE_bool("use_fp16", False, "Train using 16-bit floats instead of 32bit floats") FLAGS = flags.FLAGS class Config(object): """Small config.""" init_scale = 0.1 learning_rate = 1 max_grad_norm = 5 num_layers = 2 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.8 batch_size = 64 def data_type(): return tf.float16 if FLAGS.use_fp16 else tf.float32 # this new "softmax" function we show can train a "self-normalized" RNNLM where # the sum of the output is automatically (close to) 1.0 # which saves a lot of computation for lattice-rescoring def new_softmax(labels, logits): target = tf.reshape(labels, [-1]) f_logits = tf.exp(logits) row_sums = tf.reduce_sum(f_logits, 1) # this is the negative part of the objf t2 = tf.expand_dims(target, 1) range = tf.expand_dims(tf.range(tf.shape(target)[0]), 1) ind = tf.concat([range, t2], 1) res = tf.gather_nd(logits, ind) return -res + row_sums - 1 class RnnlmInput(object): """The input data.""" def __init__(self, config, data, name=None): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.epoch_size = ((len(data) // batch_size) - 1) // num_steps self.input_data, self.targets = reader.rnnlm_producer( data, batch_size, num_steps, name=name) class RnnlmModel(object): """The RNNLM model.""" def __init__(self, is_training, config, input_): self._input = input_ batch_size = input_.batch_size num_steps = input_.num_steps size = config.hidden_size vocab_size = config.vocab_size def lstm_cell(): # With the latest TensorFlow source code (as of Mar 27, 2017), # the BasicLSTMCell will need a reuse parameter which is unfortunately not # defined in TensorFlow 1.0. To maintain backwards compatibility, we add # an argument check here: if 'reuse' in inspect.getargspec( tf.contrib.rnn.BasicLSTMCell.__init__).args: return tf.contrib.rnn.BasicLSTMCell( size, forget_bias=0.0, state_is_tuple=True, reuse=tf.get_variable_scope().reuse) else: return tf.contrib.rnn.BasicLSTMCell( size, forget_bias=0.0, state_is_tuple=True) attn_cell = lstm_cell if is_training and config.keep_prob < 1: def attn_cell(): return tf.contrib.rnn.DropoutWrapper( lstm_cell(), output_keep_prob=config.keep_prob) self.cell = tf.contrib.rnn.MultiRNNCell( [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = self.cell.zero_state(batch_size, data_type()) self._initial_state_single = self.cell.zero_state(1, data_type()) self.initial = tf.reshape(tf.stack(axis=0, values=self._initial_state_single), [config.num_layers, 2, 1, size], name="test_initial_state") # first implement the less efficient version test_word_in = tf.placeholder(tf.int32, [1, 1], name="test_word_in") state_placeholder = tf.placeholder(tf.float32, [config.num_layers, 2, 1, size], name="test_state_in") # unpacking the input state context l = tf.unstack(state_placeholder, axis=0) test_input_state = tuple( [tf.contrib.rnn.LSTMStateTuple(l[idx][0],l[idx][1]) for idx in range(config.num_layers)] ) with tf.device("/cpu:0"): self.embedding = tf.get_variable( "embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(self.embedding, input_.input_data) test_inputs = tf.nn.embedding_lookup(self.embedding, test_word_in) # test time with tf.variable_scope("RNN"): (test_cell_output, test_output_state) = self.cell(test_inputs[:, 0, :], test_input_state) test_state_out = tf.reshape(tf.stack(axis=0, values=test_output_state), [config.num_layers, 2, 1, size], name="test_state_out") test_cell_out = tf.reshape(test_cell_output, [1, size], name="test_cell_out") # above is the first part of the graph for test # test-word-in # > ---- > test-state-out # test-state-in > test-cell-out # below is the 2nd part of the graph for test # test-word-out # > prob(word | test-word-out) # test-cell-in test_word_out = tf.placeholder(tf.int32, [1, 1], name="test_word_out") cellout_placeholder = tf.placeholder(tf.float32, [1, size], name="test_cell_in") softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) softmax_b = softmax_b - 9.0 test_logits = tf.matmul(cellout_placeholder, tf.transpose(tf.nn.embedding_lookup(tf.transpose(softmax_w), test_word_out[0]))) + softmax_b[test_word_out[0,0]] p_word = test_logits[0, 0] test_out = tf.identity(p_word, name="test_out") if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) # Simplified version of models/tutorials/rnn/rnn.py's rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use the rnn() or state_saving_rnn() from rnn.py. # # The alternative version of the code below is: # # inputs = tf.unstack(inputs, num=num_steps, axis=1) # outputs, state = tf.contrib.rnn.static_rnn( # cell, inputs, initial_state=self._initial_state) outputs = [] state = self._initial_state with tf.variable_scope("RNN"): for time_step in range(num_steps): if time_step > -1: tf.get_variable_scope().reuse_variables() (cell_output, state) = self.cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.stack(axis=1, values=outputs), [-1, size]) logits = tf.matmul(output, softmax_w) + softmax_b loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(input_.targets, [-1])], [tf.ones([batch_size * num_steps], dtype=data_type())], softmax_loss_function=new_softmax) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( list(zip(grads, tvars)), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op def run_epoch(session, model, eval_op=None, verbose=False): """Runs the model on the given data.""" start_time = time.time() costs = 0.0 iters = 0 state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, } if eval_op is not None: fetches["eval_op"] = eval_op for step in range(model.input.epoch_size): feed_dict = {} for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] costs += cost iters += model.input.num_steps if verbose and step % (model.input.epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / model.input.epoch_size, np.exp(costs / iters), iters * model.input.batch_size / (time.time() - start_time))) return np.exp(costs / iters) def get_config(): return Config() def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to RNNLM data directory") raw_data = reader.rnnlm_raw_data(FLAGS.data_path, FLAGS.vocab_path) train_data, valid_data, _, word_map = raw_data config = get_config() config.hidden_size = FLAGS.hidden_size config.vocab_size = len(word_map) eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = RnnlmInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = RnnlmModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = RnnlmInput(config=config, data=valid_data, name="ValidInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mvalid = RnnlmModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation Loss", mvalid.cost) sv = tf.train.Supervisor(logdir=FLAGS.save_path) with sv.managed_session() as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, m, eval_op=m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path) if __name__ == "__main__": tf.app.run() |