lstm_fast.py
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
# Copyright (C) 2017 Intellisist, Inc. (Author: Hainan Xu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# this script trains a vanilla RNNLM with TensorFlow.
# to call the script, do
# python steps/tfrnnlm/lstm_fast.py --data_path=$datadir \
# --save_path=$savepath --vocab_path=$rnn.wordlist [--hidden-size=$size]
#
# One example recipe is at egs/ami/s5/local/tfrnnlm/run_vanilla_rnnlm.sh
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import inspect
import time
import numpy as np
import tensorflow as tf
import reader
flags = tf.flags
logging = tf.logging
flags.DEFINE_integer("hidden_size", 200, "hidden dim of RNN")
flags.DEFINE_string("data_path", None,
"Where the training/test data is stored.")
flags.DEFINE_string("vocab_path", None,
"Where the wordlist file is stored.")
flags.DEFINE_string("save_path", None,
"Model output directory.")
flags.DEFINE_bool("use_fp16", False,
"Train using 16-bit floats instead of 32bit floats")
FLAGS = flags.FLAGS
class Config(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.8
batch_size = 64
def data_type():
return tf.float16 if FLAGS.use_fp16 else tf.float32
# this new "softmax" function we show can train a "self-normalized" RNNLM where
# the sum of the output is automatically (close to) 1.0
# which saves a lot of computation for lattice-rescoring
def new_softmax(labels, logits):
target = tf.reshape(labels, [-1])
f_logits = tf.exp(logits)
row_sums = tf.reduce_sum(f_logits, 1) # this is the negative part of the objf
t2 = tf.expand_dims(target, 1)
range = tf.expand_dims(tf.range(tf.shape(target)[0]), 1)
ind = tf.concat([range, t2], 1)
res = tf.gather_nd(logits, ind)
return -res + row_sums - 1
class RnnlmInput(object):
"""The input data."""
def __init__(self, config, data, name=None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.rnnlm_producer(
data, batch_size, num_steps, name=name)
class RnnlmModel(object):
"""The RNNLM model."""
def __init__(self, is_training, config, input_):
self._input = input_
batch_size = input_.batch_size
num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
def lstm_cell():
# With the latest TensorFlow source code (as of Mar 27, 2017),
# the BasicLSTMCell will need a reuse parameter which is unfortunately not
# defined in TensorFlow 1.0. To maintain backwards compatibility, we add
# an argument check here:
if 'reuse' in inspect.getargspec(
tf.contrib.rnn.BasicLSTMCell.__init__).args:
return tf.contrib.rnn.BasicLSTMCell(
size, forget_bias=0.0, state_is_tuple=True,
reuse=tf.get_variable_scope().reuse)
else:
return tf.contrib.rnn.BasicLSTMCell(
size, forget_bias=0.0, state_is_tuple=True)
attn_cell = lstm_cell
if is_training and config.keep_prob < 1:
def attn_cell():
return tf.contrib.rnn.DropoutWrapper(
lstm_cell(), output_keep_prob=config.keep_prob)
self.cell = tf.contrib.rnn.MultiRNNCell(
[attn_cell() for _ in range(config.num_layers)], state_is_tuple=True)
self._initial_state = self.cell.zero_state(batch_size, data_type())
self._initial_state_single = self.cell.zero_state(1, data_type())
self.initial = tf.reshape(tf.stack(axis=0, values=self._initial_state_single), [config.num_layers, 2, 1, size], name="test_initial_state")
# first implement the less efficient version
test_word_in = tf.placeholder(tf.int32, [1, 1], name="test_word_in")
state_placeholder = tf.placeholder(tf.float32, [config.num_layers, 2, 1, size], name="test_state_in")
# unpacking the input state context
l = tf.unstack(state_placeholder, axis=0)
test_input_state = tuple(
[tf.contrib.rnn.LSTMStateTuple(l[idx][0],l[idx][1])
for idx in range(config.num_layers)]
)
with tf.device("/cpu:0"):
self.embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(self.embedding, input_.input_data)
test_inputs = tf.nn.embedding_lookup(self.embedding, test_word_in)
# test time
with tf.variable_scope("RNN"):
(test_cell_output, test_output_state) = self.cell(test_inputs[:, 0, :], test_input_state)
test_state_out = tf.reshape(tf.stack(axis=0, values=test_output_state), [config.num_layers, 2, 1, size], name="test_state_out")
test_cell_out = tf.reshape(test_cell_output, [1, size], name="test_cell_out")
# above is the first part of the graph for test
# test-word-in
# > ---- > test-state-out
# test-state-in > test-cell-out
# below is the 2nd part of the graph for test
# test-word-out
# > prob(word | test-word-out)
# test-cell-in
test_word_out = tf.placeholder(tf.int32, [1, 1], name="test_word_out")
cellout_placeholder = tf.placeholder(tf.float32, [1, size], name="test_cell_in")
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
softmax_b = softmax_b - 9.0
test_logits = tf.matmul(cellout_placeholder, tf.transpose(tf.nn.embedding_lookup(tf.transpose(softmax_w), test_word_out[0]))) + softmax_b[test_word_out[0,0]]
p_word = test_logits[0, 0]
test_out = tf.identity(p_word, name="test_out")
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
# Simplified version of models/tutorials/rnn/rnn.py's rnn().
# This builds an unrolled LSTM for tutorial purposes only.
# In general, use the rnn() or state_saving_rnn() from rnn.py.
#
# The alternative version of the code below is:
#
# inputs = tf.unstack(inputs, num=num_steps, axis=1)
# outputs, state = tf.contrib.rnn.static_rnn(
# cell, inputs, initial_state=self._initial_state)
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > -1: tf.get_variable_scope().reuse_variables()
(cell_output, state) = self.cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.stack(axis=1, values=outputs), [-1, size])
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(input_.targets, [-1])],
[tf.ones([batch_size * num_steps], dtype=data_type())],
softmax_loss_function=new_softmax)
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
list(zip(grads, tvars)),
global_step=tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
@property
def input(self):
return self._input
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
start_time = time.time()
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
iters += model.input.num_steps
if verbose and step % (model.input.epoch_size // 10) == 10:
print("%.3f perplexity: %.3f speed: %.0f wps" %
(step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
iters * model.input.batch_size / (time.time() - start_time)))
return np.exp(costs / iters)
def get_config():
return Config()
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to RNNLM data directory")
raw_data = reader.rnnlm_raw_data(FLAGS.data_path, FLAGS.vocab_path)
train_data, valid_data, _, word_map = raw_data
config = get_config()
config.hidden_size = FLAGS.hidden_size
config.vocab_size = len(word_map)
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = RnnlmInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = RnnlmModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = RnnlmInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = RnnlmModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
with sv.managed_session() as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
if FLAGS.save_path:
print("Saving model to %s." % FLAGS.save_path)
sv.saver.save(session, FLAGS.save_path)
if __name__ == "__main__":
tf.app.run()