Blame view
egs/wsj/s5/steps/train_lda_mllt.sh
9.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # # LDA+MLLT refers to the way we transform the features after computing # the MFCCs: we splice across several frames, reduce the dimension (to 40 # by default) using Linear Discriminant Analysis), and then later estimate, # over multiple iterations, a diagonalizing transform known as MLLT or STC. # See http://kaldi-asr.org/doc/transform.html for more explanation. # # Apache 2.0. # Begin configuration. cmd=run.pl config= stage=-5 scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" realign_iters="10 20 30"; mllt_iters="2 4 6 12"; num_iters=35 # Number of iterations of training max_iter_inc=25 # Last iter to increase #Gauss on. dim=40 beam=10 retry_beam=40 careful=false boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment power=0.25 # Exponent for number of gaussians according to occurrence counts randprune=4.0 # This is approximately the ratio by which we will speed up the # LDA and MLLT calculations via randomized pruning. splice_opts= cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves norm_vars=false # deprecated. Prefer --cmvn-opts "--norm-vars=false" cmvn_opts= context_opts= # use "--context-width=5 --central-position=2" for quinphone. # End configuration. train_tree=true # if false, don't actually train the tree. use_lda_mat= # If supplied, use this LDA[+MLLT] matrix. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_lda_mllt.sh [options] <#leaves> <#gauss> <data> <lang> <alignments> <dir>" echo " e.g.: steps/train_lda_mllt.sh 2500 15000 data/train_si84 data/lang exp/tri1_ali_si84 exp/tri2b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." exit 1; fi numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 for f in $alidir/final.mdl $alidir/ali.1.gz $data/feats.scp $lang/phones.txt; do [ ! -f $f ] && echo "train_lda_mllt.sh: no such file $f" && exit 1; done numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment oov=`cat $lang/oov.int` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; silphonelist=`cat $lang/phones/silence.csl` || exit 1; ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1; mkdir -p $dir/log utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1; cp $lang/phones.txt $dir || exit 1; echo $nj >$dir/num_jobs echo "$splice_opts" >$dir/splice_opts # keep track of frame-splicing options # so that later stages of system building can know what they were. [ $(cat $alidir/cmvn_opts 2>/dev/null | wc -c) -gt 1 ] && [ -z "$cmvn_opts" ] && \ echo "$0: warning: ignoring CMVN options from source directory $alidir" $norm_vars && cmvn_opts="--norm-vars=true $cmvn_opts" echo $cmvn_opts > $dir/cmvn_opts # keep track of options to CMVN. sdata=$data/split$nj; split_data.sh $data $nj || exit 1; splicedfeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |" # Note: $feats gets overwritten later in the script. feats="$splicedfeats transform-feats $dir/0.mat ark:- ark:- |" if [ $stage -le -5 ]; then if [ -z "$use_lda_mat" ]; then echo "$0: Accumulating LDA statistics." rm $dir/lda.*.acc 2>/dev/null $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc else echo "$0: Using supplied LDA matrix $use_lda_mat" cp $use_lda_mat $dir/0.mat || exit 1; [ ! -z "$mllt_iters" ] && \ echo "$0: Warning: using supplied LDA matrix $use_lda_mat but we will do MLLT," && \ echo " which you might not want; to disable MLLT, specify --mllt-iters ''" && \ sleep 5 fi fi cur_lda_iter=0 if [ $stage -le -4 ] && $train_tree; then echo "$0: Accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats $context_opts \ --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ `ls $dir/*.treeacc | wc -w` -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1; $cmd $dir/log/sum_tree_acc.log \ sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1; rm $dir/*.treeacc fi if [ $stage -le -3 ] && $train_tree; then echo "$0: Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $context_opts $dir/treeacc $lang/phones/sets.int \ $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $context_opts $lang/topo $dir/questions.int \ $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "$0: Building the tree" $cmd $dir/log/build_tree.log \ build-tree $context_opts --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; fi if [ $stage -le -2 ]; then echo "$0: Initializing the model" if $train_tree; then gmm-init-model --write-occs=$dir/1.occs \ $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1; grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning."; rm $dir/treeacc else cp $alidir/tree $dir/ || exit 1; $cmd JOB=1 $dir/log/init_model.log \ gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \ "$feats subset-feats ark:- ark:-|" || exit 1; fi fi if [ $stage -le -1 ]; then # Convert the alignments. echo "$0: Converting alignments from $alidir to use current tree" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then echo "$0: Compiling graphs of transcripts" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $dir/1.mdl $lang/L.fst \ "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data/split$nj/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo Training pass $x if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo Aligning data mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam --careful=$careful "$mdl" \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \ "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if echo $mllt_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo "$0: Estimating MLLT" $cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \ || exit 1; est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1; gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \ 2> $dir/log/transform_means.$x.log || exit 1; compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1; rm $dir/$x.*.macc fi feats="$splicedfeats transform-feats $dir/$x.mat ark:- ark:- |" cur_lda_iter=$x fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; $cmd $dir/log/update.$x.log \ gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss --power=$power \ $dir/$x.mdl "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs fi [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done rm $dir/final.{mdl,mat,occs} 2>/dev/null ln -s $x.mdl $dir/final.mdl ln -s $x.occs $dir/final.occs ln -s $cur_lda_iter.mat $dir/final.mat steps/diagnostic/analyze_alignments.sh --cmd "$cmd" $lang $dir # Summarize warning messages... utils/summarize_warnings.pl $dir/log steps/info/gmm_dir_info.pl $dir echo "$0: Done training system with LDA+MLLT features in $dir" exit 0 |