train_lda_mllt.sh
9.07 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
#
# LDA+MLLT refers to the way we transform the features after computing
# the MFCCs: we splice across several frames, reduce the dimension (to 40
# by default) using Linear Discriminant Analysis), and then later estimate,
# over multiple iterations, a diagonalizing transform known as MLLT or STC.
# See http://kaldi-asr.org/doc/transform.html for more explanation.
#
# Apache 2.0.
# Begin configuration.
cmd=run.pl
config=
stage=-5
scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
realign_iters="10 20 30";
mllt_iters="2 4 6 12";
num_iters=35 # Number of iterations of training
max_iter_inc=25 # Last iter to increase #Gauss on.
dim=40
beam=10
retry_beam=40
careful=false
boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
power=0.25 # Exponent for number of gaussians according to occurrence counts
randprune=4.0 # This is approximately the ratio by which we will speed up the
# LDA and MLLT calculations via randomized pruning.
splice_opts=
cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves
norm_vars=false # deprecated. Prefer --cmvn-opts "--norm-vars=false"
cmvn_opts=
context_opts= # use "--context-width=5 --central-position=2" for quinphone.
# End configuration.
train_tree=true # if false, don't actually train the tree.
use_lda_mat= # If supplied, use this LDA[+MLLT] matrix.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh
. parse_options.sh || exit 1;
if [ $# != 6 ]; then
echo "Usage: steps/train_lda_mllt.sh [options] <#leaves> <#gauss> <data> <lang> <alignments> <dir>"
echo " e.g.: steps/train_lda_mllt.sh 2500 15000 data/train_si84 data/lang exp/tri1_ali_si84 exp/tri2b"
echo "Main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
exit 1;
fi
numleaves=$1
totgauss=$2
data=$3
lang=$4
alidir=$5
dir=$6
for f in $alidir/final.mdl $alidir/ali.1.gz $data/feats.scp $lang/phones.txt; do
[ ! -f $f ] && echo "train_lda_mllt.sh: no such file $f" && exit 1;
done
numgauss=$numleaves
incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment
oov=`cat $lang/oov.int` || exit 1;
nj=`cat $alidir/num_jobs` || exit 1;
silphonelist=`cat $lang/phones/silence.csl` || exit 1;
ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1;
mkdir -p $dir/log
utils/lang/check_phones_compatible.sh $lang/phones.txt $alidir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
echo $nj >$dir/num_jobs
echo "$splice_opts" >$dir/splice_opts # keep track of frame-splicing options
# so that later stages of system building can know what they were.
[ $(cat $alidir/cmvn_opts 2>/dev/null | wc -c) -gt 1 ] && [ -z "$cmvn_opts" ] && \
echo "$0: warning: ignoring CMVN options from source directory $alidir"
$norm_vars && cmvn_opts="--norm-vars=true $cmvn_opts"
echo $cmvn_opts > $dir/cmvn_opts # keep track of options to CMVN.
sdata=$data/split$nj;
split_data.sh $data $nj || exit 1;
splicedfeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |"
# Note: $feats gets overwritten later in the script.
feats="$splicedfeats transform-feats $dir/0.mat ark:- ark:- |"
if [ $stage -le -5 ]; then
if [ -z "$use_lda_mat" ]; then
echo "$0: Accumulating LDA statistics."
rm $dir/lda.*.acc 2>/dev/null
$cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \
ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \
acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \
$dir/lda.JOB.acc || exit 1;
est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \
2>$dir/log/lda_est.log || exit 1;
rm $dir/lda.*.acc
else
echo "$0: Using supplied LDA matrix $use_lda_mat"
cp $use_lda_mat $dir/0.mat || exit 1;
[ ! -z "$mllt_iters" ] && \
echo "$0: Warning: using supplied LDA matrix $use_lda_mat but we will do MLLT," && \
echo " which you might not want; to disable MLLT, specify --mllt-iters ''" && \
sleep 5
fi
fi
cur_lda_iter=0
if [ $stage -le -4 ] && $train_tree; then
echo "$0: Accumulating tree stats"
$cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \
acc-tree-stats $context_opts \
--ci-phones=$ciphonelist $alidir/final.mdl "$feats" \
"ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1;
[ `ls $dir/*.treeacc | wc -w` -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1;
$cmd $dir/log/sum_tree_acc.log \
sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1;
rm $dir/*.treeacc
fi
if [ $stage -le -3 ] && $train_tree; then
echo "$0: Getting questions for tree clustering."
# preparing questions, roots file...
cluster-phones $context_opts $dir/treeacc $lang/phones/sets.int \
$dir/questions.int 2> $dir/log/questions.log || exit 1;
cat $lang/phones/extra_questions.int >> $dir/questions.int
compile-questions $context_opts $lang/topo $dir/questions.int \
$dir/questions.qst 2>$dir/log/compile_questions.log || exit 1;
echo "$0: Building the tree"
$cmd $dir/log/build_tree.log \
build-tree $context_opts --verbose=1 --max-leaves=$numleaves \
--cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \
$dir/questions.qst $lang/topo $dir/tree || exit 1;
fi
if [ $stage -le -2 ]; then
echo "$0: Initializing the model"
if $train_tree; then
gmm-init-model --write-occs=$dir/1.occs \
$dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/log/init_model.log || exit 1;
grep 'no stats' $dir/log/init_model.log && echo "This is a bad warning.";
rm $dir/treeacc
else
cp $alidir/tree $dir/ || exit 1;
$cmd JOB=1 $dir/log/init_model.log \
gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \
"$feats subset-feats ark:- ark:-|" || exit 1;
fi
fi
if [ $stage -le -1 ]; then
# Convert the alignments.
echo "$0: Converting alignments from $alidir to use current tree"
$cmd JOB=1:$nj $dir/log/convert.JOB.log \
convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \
"ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then
echo "$0: Compiling graphs of transcripts"
$cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \
compile-train-graphs --read-disambig-syms=$lang/phones/disambig.int $dir/tree $dir/1.mdl $lang/L.fst \
"ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $data/split$nj/JOB/text |" \
"ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1;
fi
x=1
while [ $x -lt $num_iters ]; do
echo Training pass $x
if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then
echo Aligning data
mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |"
$cmd JOB=1:$nj $dir/log/align.$x.JOB.log \
gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam --careful=$careful "$mdl" \
"ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \
"ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
fi
if echo $mllt_iters | grep -w $x >/dev/null; then
if [ $stage -le $x ]; then
echo "$0: Estimating MLLT"
$cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \
ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \
weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \
gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \
|| exit 1;
est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1;
gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \
2> $dir/log/transform_means.$x.log || exit 1;
compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1;
rm $dir/$x.*.macc
fi
feats="$splicedfeats transform-feats $dir/$x.mat ark:- ark:- |"
cur_lda_iter=$x
fi
if [ $stage -le $x ]; then
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-acc-stats-ali $dir/$x.mdl "$feats" \
"ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1;
$cmd $dir/log/update.$x.log \
gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss --power=$power \
$dir/$x.mdl "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1;
rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs
fi
[ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss];
x=$[$x+1];
done
rm $dir/final.{mdl,mat,occs} 2>/dev/null
ln -s $x.mdl $dir/final.mdl
ln -s $x.occs $dir/final.occs
ln -s $cur_lda_iter.mat $dir/final.mat
steps/diagnostic/analyze_alignments.sh --cmd "$cmd" $lang $dir
# Summarize warning messages...
utils/summarize_warnings.pl $dir/log
steps/info/gmm_dir_info.pl $dir
echo "$0: Done training system with LDA+MLLT features in $dir"
exit 0