Blame view
egs/wsj/s5/utils/nnet-cpu/make_nnet_config_preconditioned.pl
11.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
#!/usr/bin/env perl use warnings; #sed replacement for -w perl parameter # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # These options can be useful if we want to splice the input # features across time. $input_left_context = 0; $input_right_context = 0; $param_stddev_factor = 1.0; # can be used to adjust initial variance # of parameters. $initial_num_hidden_layers = -1; # if >= 0, the number of hidden layers # the model should start with, which may be less than the final number # (the final number is used to calculate the #neurons). $single_layer_config = ""; # a file to which we'll output a config corresponding # to a single layer; we'll later use this to add layers to the neural # network. $bias_stddev = 2.0; # Standard deviation for random initialization of the # bias terms (mean is zero). $splice_max_context = 0; # Relates to SpliceMaxComponent (experimental feature) $learning_rate = 0.001; $max_change = 0.0; $nonlinear_component_type = "Tanh"; $alpha = 4.0; $l2_penalty_opt = ""; # Option for AffineComponentPreconditioned layer. $tree_map = ""; # If supplied, a text file that maps from l2 to l1 tree nodes (output # by build-tree-two-level). Used for initializing mixture-prob component. $splice_context = 0; $dropout_scale = -1.0; # if not -1.0, scale for "lower" part of # dropout scale, typically 0 <= dropout_scale < 1. $additive_noise_stddev = 0.0; # I didn't find this helpful either. $lda_dim = 0; $expand_power = 1; $expand_scale = 1.0; $lda_mat = ""; for ($x = 1; $x < 10; $x++) { if ($ARGV[0] eq "--input-left-context") { $input_left_context = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--l2-penalty") { my $l2_penalty = $ARGV[1]; $l2_penalty_opt = "l2-penalty=$l2_penalty"; shift; shift; } if ($ARGV[0] eq "--dropout-scale") { $dropout_scale = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--expand-power") { $expand_power = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--expand-scale") { $expand_scale = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--max-change") { $max_change = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--additive-noise-stddev") { $additive_noise_stddev = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--nonlinear-component-type") { $nonlinear_component_type = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--lda-mat") { $splice_context = $ARGV[1]; $lda_dim = $ARGV[2]; $lda_mat = $ARGV[3]; shift; shift; shift; shift; } if ($ARGV[0] eq "--input-right-context") { $input_right_context = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--param-stddev-factor") { $param_stddev_factor = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--bias-stddev") { $bias_stddev = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--alpha") { $alpha = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--splice-max-context") { $splice_max_context = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--learning-rate") { $learning_rate = $ARGV[1]; shift; shift; } if ($ARGV[0] eq "--initial-num-hidden-layers") { $initial_num_hidden_layers = $ARGV[1]; $single_layer_config = $ARGV[2]; shift; shift; shift; } if ($ARGV[0] eq "--tree-map") { # Note: this was for an idea that # didn't end up working for me; it relates to SCTM-like systems. $tree_map = $ARGV[1]; shift; shift; } } if (@ARGV != 4) { print STDERR "Usage: make_nnet_config_preconditioned.pl [options] <feat-dim> <num-leaves> <num-hidden-layers> <num-parameters> >config-file Options: --input-left-context <n> # #frames of left context for input features; default 0 (this separate from pre-LDA splicing). --input-right-context <n> # #frames of right context for input features; default 0 (this separate from pre-LDA splicing). --param-stdddev-factor <f> # Factor which can be used to modify the standard deviation of # randomly nitialized features (default, 1. Gets multiplied by # 1/sqrt of number of inputs). --initial-num-hidden-layers <n> <config-file> # If >0, number of hidden layers to initialize the network with. # In this case, the positional parameter <num-hidden-layers> is only # used to work out the number of units per hidden layer (based on # parameter count), and we write to <config-file> the config corresponding # to a single hidden layer. --alpha <f> # Factor (default 0.1) which affects the preconditioning. 0 < alpha <= 1; # smaller means more aggressive preconditioning / less smoothing of the Fisher # matrix. --learning-rate <f> # Initial learning rate, default 0.001 --lda-mat <splice-width> <lda-dimension> <lda-matrix-filename> # Allows the user to specify splice-and-lda # with a given transformation, as a fixed component in the network. E.g. # splice-width of 4 represents context of +- 4 frames. Here, lda-dimension is # the output dimension of LDA, which must be the same as in the file. "; exit(1); } ($feat_dim, $num_leaves, $num_hidden_layers, $num_params) = @ARGV; ($input_left_context < 0) && die "Invalid input left context $input_left_context"; ($input_right_context < 0) && die "Invalid input right context $input_right_context"; ($feat_dim <= 0) && die "Invalid feature dimension $feat_dim"; ($num_leaves <= 0) && die "Invalid number of leaves $num_leaves"; ($num_hidden_layers <= 0) && die "Invalid number of hidden layers $num_hidden_layers"; if ($initial_num_hidden_layers < 0) { $initial_num_hidden_layers = $num_hidden_layers; } if ($initial_num_hidden_layers > $num_hidden_layers) { print STDERR "Initial number of hidden layers is more than #hidden layers. " . "This does not really make sense but continuing anyway."; } $context_size = 1 + $input_left_context + $input_right_context; ($num_params < ($num_leaves + ($feat_dim * $context_size) + $num_hidden_layers + 1)) && die "Invalid number of params $num_params"; ## num_params = hidden_layer_size^2 * (num_hidden_layers-1) ## + hidden_layer_size * (num_leaves + feat_dim * context_size * expand_power) ## solve for hidden_layer_size = x. ## a x^2 + b x + c, with ## a = num_hidden_layers - 1 ## b = num_leaves + feat_dim * context_size ## c = -num_params $a = $num_hidden_layers - 1; $b = $num_leaves + $feat_dim * $context_size * $expand_power; $c = -$num_params; if ($a > 0) { $hidden_layer_size = int((-$b + sqrt($b*$b - 4*$a*$c)) / (2*$a)); } else { $hidden_layer_size = int(-$c/$b); } $actual_num_params = $hidden_layer_size * $hidden_layer_size * ($num_hidden_layers - 1) + $hidden_layer_size * ($num_leaves + $feat_dim * $context_size * $expand_power); if (abs($actual_num_params - $num_params) > 0.1 * $num_params) { print STDERR "Warning: make_nnet_config.pl: possible failure $actual_num_params != $num_params"; } if ($splice_context > 0) { # --lda-mat <splice-context> <lda-matrix> was specified... print "SpliceComponent input-dim=$feat_dim left-context=$splice_context right-context=$splice_context "; print "FixedLinearComponent matrix=$lda_mat "; # specify the filename. $feat_dim = $lda_dim; # This is now the input dimension. } if ($splice_max_context > 0) { print "SpliceMaxComponent dim=$feat_dim left-context=$splice_max_context right-context=$splice_max_context "; } if ($input_left_context + $input_right_context != 0) { # First component has to be splicing component... # Note: we might be interested in decorrelating this e.g. with # DCT layer at some point, but for now, splicing isn't seeming to be # that useful. print "SpliceComponent input-dim=$feat_dim left-context=$input_left_context right-context=$input_right_context "; } $cur_input_dim = $feat_dim * (1 + $input_left_context + $input_right_context); if ($expand_power > 1) { print "PowerExpandComponent input-dim=$cur_input_dim max-power=$expand_power higher-power-scale=$expand_scale "; $cur_input_dim *= $expand_power; } for ($hidden_layer = 0; $hidden_layer < $initial_num_hidden_layers; $hidden_layer++) { $param_stddev = $param_stddev_factor * 1.0 / sqrt($cur_input_dim); print "AffineComponentPreconditioned input-dim=$cur_input_dim output-dim=$hidden_layer_size alpha=$alpha max-change=$max_change " . "$l2_penalty_opt learning-rate=$learning_rate param-stddev=$param_stddev bias-stddev=$bias_stddev "; $cur_input_dim = $hidden_layer_size; print "${nonlinear_component_type}Component dim=$cur_input_dim "; if ($dropout_scale != -1.0) { print "DropoutComponent dim=$cur_input_dim dropout-scale=$dropout_scale "; } if ($additive_noise_stddev != 0.0) { print "AdditiveNoiseComponent dim=$cur_input_dim stddev=$additive_noise_stddev "; } } if ($single_layer_config ne "") { # Create a config file we'll use to add new hidden layers. open(F, ">$single_layer_config") || die "Error opening $single_layer_config for output"; $param_stddev = $param_stddev_factor * 1.0 / sqrt($hidden_layer_size); print F "AffineComponentPreconditioned input-dim=$hidden_layer_size output-dim=$hidden_layer_size alpha=$alpha max-change=$max_change " . "$l2_penalty_opt learning-rate=$learning_rate param-stddev=$param_stddev bias-stddev=$bias_stddev "; print F "${nonlinear_component_type}Component dim=$hidden_layer_size "; if ($dropout_scale != -1.0) { print F "DropoutComponent dim=$cur_input_dim dropout-scale=$dropout_scale "; } if ($additive_noise_stddev != 0.0) { print F "AdditiveNoiseComponent dim=$cur_input_dim stddev=$additive_noise_stddev "; } close (F) || die "Closing config file"; } ## Now the output layer. print "AffineComponentPreconditioned input-dim=$cur_input_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change " . "$l2_penalty_opt learning-rate=$learning_rate param-stddev=0 bias-stddev=0 "; # we just set the parameters to zero for this layer. ## the softmax nonlinearity. print "SoftmaxComponent dim=$num_leaves "; if ($tree_map ne "") { # Create a MixtureProbComponent at the end, that shares "Gaussians" # among leaves that share the same level-1 tree index. open(F, "<$tree_map") || die "opening tree map file $tree_map"; $map = <F>; close(F); $map =~ s/\s*\[\s*// || die "Unexpected data in tree map file $tree_map"; $map =~ s/\s*\]\s*// || die "Unexpected data in tree map file $tree_map"; @map = split(" ", $map); @dims = (); while (@map > 0) { $index = shift @map; $n = 1; while (@map > 0 && $map[0] == $index) { shift @map; $n++; } push @dims, $n; } $dims = join(":", @dims); print "MixtureProbComponent learning-rate=$learning_rate diag-element=0.9 dims=$dims "; } ## |