make_nnet_config_preconditioned.pl
11.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env perl
use warnings; #sed replacement for -w perl parameter
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
# MERCHANTABLITY OR NON-INFRINGEMENT.
# See the Apache 2 License for the specific language governing permissions and
# limitations under the License.
# These options can be useful if we want to splice the input
# features across time.
$input_left_context = 0;
$input_right_context = 0;
$param_stddev_factor = 1.0; # can be used to adjust initial variance
# of parameters.
$initial_num_hidden_layers = -1; # if >= 0, the number of hidden layers
# the model should start with, which may be less than the final number
# (the final number is used to calculate the #neurons).
$single_layer_config = ""; # a file to which we'll output a config corresponding
# to a single layer; we'll later use this to add layers to the neural
# network.
$bias_stddev = 2.0; # Standard deviation for random initialization of the
# bias terms (mean is zero).
$splice_max_context = 0; # Relates to SpliceMaxComponent (experimental feature)
$learning_rate = 0.001;
$max_change = 0.0;
$nonlinear_component_type = "Tanh";
$alpha = 4.0;
$l2_penalty_opt = ""; # Option for AffineComponentPreconditioned layer.
$tree_map = ""; # If supplied, a text file that maps from l2 to l1 tree nodes (output
# by build-tree-two-level). Used for initializing mixture-prob component.
$splice_context = 0;
$dropout_scale = -1.0; # if not -1.0, scale for "lower" part of
# dropout scale, typically 0 <= dropout_scale < 1.
$additive_noise_stddev = 0.0; # I didn't find this helpful either.
$lda_dim = 0;
$expand_power = 1;
$expand_scale = 1.0;
$lda_mat = "";
for ($x = 1; $x < 10; $x++) {
if ($ARGV[0] eq "--input-left-context") {
$input_left_context = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--l2-penalty") {
my $l2_penalty = $ARGV[1];
$l2_penalty_opt = "l2-penalty=$l2_penalty";
shift; shift;
}
if ($ARGV[0] eq "--dropout-scale") {
$dropout_scale = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--expand-power") {
$expand_power = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--expand-scale") {
$expand_scale = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--max-change") {
$max_change = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--additive-noise-stddev") {
$additive_noise_stddev = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--nonlinear-component-type") {
$nonlinear_component_type = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--lda-mat") {
$splice_context = $ARGV[1];
$lda_dim = $ARGV[2];
$lda_mat = $ARGV[3];
shift; shift; shift; shift;
}
if ($ARGV[0] eq "--input-right-context") {
$input_right_context = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--param-stddev-factor") {
$param_stddev_factor = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--bias-stddev") {
$bias_stddev = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--alpha") {
$alpha = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--splice-max-context") {
$splice_max_context = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--learning-rate") {
$learning_rate = $ARGV[1];
shift; shift;
}
if ($ARGV[0] eq "--initial-num-hidden-layers") {
$initial_num_hidden_layers = $ARGV[1];
$single_layer_config = $ARGV[2];
shift; shift; shift;
}
if ($ARGV[0] eq "--tree-map") { # Note: this was for an idea that
# didn't end up working for me; it relates to SCTM-like systems.
$tree_map = $ARGV[1];
shift; shift;
}
}
if (@ARGV != 4) {
print STDERR "Usage: make_nnet_config_preconditioned.pl [options] <feat-dim> <num-leaves> <num-hidden-layers> <num-parameters> >config-file
Options:
--input-left-context <n> # #frames of left context for input features; default 0 (this separate from pre-LDA splicing).
--input-right-context <n> # #frames of right context for input features; default 0 (this separate from pre-LDA splicing).
--param-stdddev-factor <f> # Factor which can be used to modify the standard deviation of
# randomly nitialized features (default, 1. Gets multiplied by
# 1/sqrt of number of inputs).
--initial-num-hidden-layers <n> <config-file> # If >0, number of hidden layers to initialize the network with.
# In this case, the positional parameter <num-hidden-layers> is only
# used to work out the number of units per hidden layer (based on
# parameter count), and we write to <config-file> the config corresponding
# to a single hidden layer.
--alpha <f> # Factor (default 0.1) which affects the preconditioning. 0 < alpha <= 1;
# smaller means more aggressive preconditioning / less smoothing of the Fisher
# matrix.
--learning-rate <f> # Initial learning rate, default 0.001
--lda-mat <splice-width> <lda-dimension> <lda-matrix-filename> # Allows the user to specify splice-and-lda
# with a given transformation, as a fixed component in the network. E.g.
# splice-width of 4 represents context of +- 4 frames. Here, lda-dimension is
# the output dimension of LDA, which must be the same as in the file.\n";
exit(1);
}
($feat_dim, $num_leaves, $num_hidden_layers, $num_params) = @ARGV;
($input_left_context < 0) && die "Invalid input left context $input_left_context";
($input_right_context < 0) && die "Invalid input right context $input_right_context";
($feat_dim <= 0) && die "Invalid feature dimension $feat_dim";
($num_leaves <= 0) && die "Invalid number of leaves $num_leaves";
($num_hidden_layers <= 0) && die "Invalid number of hidden layers $num_hidden_layers";
if ($initial_num_hidden_layers < 0) {
$initial_num_hidden_layers = $num_hidden_layers;
}
if ($initial_num_hidden_layers > $num_hidden_layers) {
print STDERR "Initial number of hidden layers is more than #hidden layers.\n" .
"This does not really make sense but continuing anyway.";
}
$context_size = 1 + $input_left_context + $input_right_context;
($num_params < ($num_leaves + ($feat_dim * $context_size) + $num_hidden_layers + 1))
&& die "Invalid number of params $num_params";
## num_params = hidden_layer_size^2 * (num_hidden_layers-1)
## + hidden_layer_size * (num_leaves + feat_dim * context_size * expand_power)
## solve for hidden_layer_size = x.
## a x^2 + b x + c, with
## a = num_hidden_layers - 1
## b = num_leaves + feat_dim * context_size
## c = -num_params
$a = $num_hidden_layers - 1;
$b = $num_leaves + $feat_dim * $context_size * $expand_power;
$c = -$num_params;
if ($a > 0) {
$hidden_layer_size = int((-$b + sqrt($b*$b - 4*$a*$c)) / (2*$a));
} else {
$hidden_layer_size = int(-$c/$b);
}
$actual_num_params = $hidden_layer_size * $hidden_layer_size * ($num_hidden_layers - 1)
+ $hidden_layer_size * ($num_leaves + $feat_dim * $context_size * $expand_power);
if (abs($actual_num_params - $num_params) > 0.1 * $num_params) {
print STDERR "Warning: make_nnet_config.pl: possible failure $actual_num_params != $num_params";
}
if ($splice_context > 0) { # --lda-mat <splice-context> <lda-matrix> was specified...
print "SpliceComponent input-dim=$feat_dim left-context=$splice_context right-context=$splice_context\n";
print "FixedLinearComponent matrix=$lda_mat\n"; # specify the filename.
$feat_dim = $lda_dim; # This is now the input dimension.
}
if ($splice_max_context > 0) {
print "SpliceMaxComponent dim=$feat_dim left-context=$splice_max_context right-context=$splice_max_context\n";
}
if ($input_left_context + $input_right_context != 0) {
# First component has to be splicing component...
# Note: we might be interested in decorrelating this e.g. with
# DCT layer at some point, but for now, splicing isn't seeming to be
# that useful.
print "SpliceComponent input-dim=$feat_dim left-context=$input_left_context right-context=$input_right_context\n";
}
$cur_input_dim = $feat_dim * (1 + $input_left_context + $input_right_context);
if ($expand_power > 1) {
print "PowerExpandComponent input-dim=$cur_input_dim max-power=$expand_power higher-power-scale=$expand_scale\n";
$cur_input_dim *= $expand_power;
}
for ($hidden_layer = 0; $hidden_layer < $initial_num_hidden_layers; $hidden_layer++) {
$param_stddev = $param_stddev_factor * 1.0 / sqrt($cur_input_dim);
print "AffineComponentPreconditioned input-dim=$cur_input_dim output-dim=$hidden_layer_size alpha=$alpha max-change=$max_change " .
"$l2_penalty_opt learning-rate=$learning_rate param-stddev=$param_stddev bias-stddev=$bias_stddev\n";
$cur_input_dim = $hidden_layer_size;
print "${nonlinear_component_type}Component dim=$cur_input_dim\n";
if ($dropout_scale != -1.0) {
print "DropoutComponent dim=$cur_input_dim dropout-scale=$dropout_scale\n";
}
if ($additive_noise_stddev != 0.0) {
print "AdditiveNoiseComponent dim=$cur_input_dim stddev=$additive_noise_stddev\n";
}
}
if ($single_layer_config ne "") {
# Create a config file we'll use to add new hidden layers.
open(F, ">$single_layer_config") || die "Error opening $single_layer_config for output";
$param_stddev = $param_stddev_factor * 1.0 / sqrt($hidden_layer_size);
print F "AffineComponentPreconditioned input-dim=$hidden_layer_size output-dim=$hidden_layer_size alpha=$alpha max-change=$max_change " .
"$l2_penalty_opt learning-rate=$learning_rate param-stddev=$param_stddev bias-stddev=$bias_stddev\n";
print F "${nonlinear_component_type}Component dim=$hidden_layer_size\n";
if ($dropout_scale != -1.0) {
print F "DropoutComponent dim=$cur_input_dim dropout-scale=$dropout_scale\n";
}
if ($additive_noise_stddev != 0.0) {
print F "AdditiveNoiseComponent dim=$cur_input_dim stddev=$additive_noise_stddev\n";
}
close (F) || die "Closing config file";
}
## Now the output layer.
print "AffineComponentPreconditioned input-dim=$cur_input_dim output-dim=$num_leaves alpha=$alpha max-change=$max_change " .
"$l2_penalty_opt learning-rate=$learning_rate param-stddev=0 bias-stddev=0\n"; # we just set the parameters to zero for this layer.
## the softmax nonlinearity.
print "SoftmaxComponent dim=$num_leaves\n";
if ($tree_map ne "") {
# Create a MixtureProbComponent at the end, that shares "Gaussians"
# among leaves that share the same level-1 tree index.
open(F, "<$tree_map") || die "opening tree map file $tree_map";
$map = <F>;
close(F);
$map =~ s/\s*\[\s*// || die "Unexpected data in tree map file $tree_map";
$map =~ s/\s*\]\s*// || die "Unexpected data in tree map file $tree_map";
@map = split(" ", $map);
@dims = ();
while (@map > 0) {
$index = shift @map;
$n = 1;
while (@map > 0 && $map[0] == $index) { shift @map; $n++; }
push @dims, $n;
}
$dims = join(":", @dims);
print "MixtureProbComponent learning-rate=$learning_rate diag-element=0.9 dims=$dims\n";
}
##