Blame view
src/ivectorbin/logistic-regression-train.cc
3.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
// ivectorbin/logistic-regression-train.cc // Copyright 2014 David Snyder // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/logistic-regression.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Trains a model using Logistic Regression with L-BFGS from " "a set of vectors. The class labels in <classes-rspecifier> " "must be a set of integers such that there are no gaps in " "its range and the smallest label must be 0. " "Usage: logistic-regression-train <vector-rspecifier> " "<classes-rspecifier> <model-out> "; ParseOptions po(usage); bool binary = true; LogisticRegressionConfig config; config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string vector_rspecifier = po.GetArg(1), class_rspecifier = po.GetArg(2), model_out = po.GetArg(3); RandomAccessBaseFloatVectorReader vector_reader(vector_rspecifier); SequentialInt32Reader class_reader(class_rspecifier); std::vector<int32> ys; std::vector<std::string> utt_ids; std::vector<Vector<BaseFloat> > vectors; int32 num_utt_done = 0, num_utt_err = 0; int32 num_classes = 0; for (; !class_reader.Done(); class_reader.Next()) { std::string utt = class_reader.Key(); int32 class_label = class_reader.Value(); if (!vector_reader.HasKey(utt)) { KALDI_WARN << "No vector for utterance " << utt; num_utt_err++; } else { ys.push_back(class_label); const Vector<BaseFloat> &vector = vector_reader.Value(utt); vectors.push_back(vector); // Since there are no gaps in the class labels and we // start at 0, the largest label is the number of the // of the classes - 1. if (class_label > num_classes) { num_classes = class_label; } num_utt_done++; } } // Since the largest label is 1 minus the number of // classes. num_classes += 1; KALDI_LOG << "Retrieved " << num_utt_done << " vectors with " << num_utt_err << " missing. " << "There were " << num_classes << " class labels."; if (num_utt_done == 0) KALDI_ERR << "No vectors processed. Unable to train."; Matrix<BaseFloat> xs(vectors.size(), vectors[0].Dim()); for (int i = 0; i < vectors.size(); i++) { xs.Row(i).CopyFromVec(vectors[i]); } vectors.clear(); LogisticRegression classifier = LogisticRegression(); classifier.Train(xs, ys, config); WriteKaldiObject(classifier, model_out, binary); return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |