Blame view
tools/openfst-1.6.7/src/include/fst/concat.h
7.23 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to compute the concatenation of two FSTs. #ifndef FST_CONCAT_H_ #define FST_CONCAT_H_ #include <algorithm> #include <vector> #include <fst/mutable-fst.h> #include <fst/rational.h> namespace fst { // Computes the concatenation (product) of two FSTs. If FST1 transduces string // x to y with weight a and FST2 transduces string w to v with weight b, then // their concatenation transduces string xw to yv with weight Times(a, b). // // This version modifies its MutableFst argument (in first position). // // Complexity: // // Time: O(V1 + V2 + E2) // Space: O(V1 + V2 + E2) // // where Vi is the number of states, and Ei is the number of arcs, of the ith // FST. template <class Arc> void Concat(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible. if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst1->SetProperties(kError, kError); return; } const auto props1 = fst1->Properties(kFstProperties, false); const auto props2 = fst2.Properties(kFstProperties, false); const auto start1 = fst1->Start(); if (start1 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } const auto numstates1 = fst1->NumStates(); if (fst2.Properties(kExpanded, false)) { fst1->ReserveStates(numstates1 + CountStates(fst2)); } for (StateIterator<Fst<Arc>> siter2(fst2); !siter2.Done(); siter2.Next()) { const auto s1 = fst1->AddState(); const auto s2 = siter2.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } const auto start2 = fst2.Start(); for (StateId s1 = 0; s1 < numstates1; ++s1) { const auto weight = fst1->Final(s1); if (weight != Weight::Zero()) { fst1->SetFinal(s1, Weight::Zero()); if (start2 != kNoStateId) { fst1->AddArc(s1, Arc(0, 0, weight, start2 + numstates1)); } } } if (start2 != kNoStateId) { fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties); } } // Computes the concatentation of two FSTs. This version modifies its // MutableFst argument (in second position). // // Complexity: // // Time: O(V1 + E1) // Space: O(V1 + E1) // // where Vi is the number of states, and Ei is the number of arcs, of the ith // FST. template <class Arc> void Concat(const Fst<Arc> &fst1, MutableFst<Arc> *fst2) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible. if (!CompatSymbols(fst1.InputSymbols(), fst2->InputSymbols()) || !CompatSymbols(fst1.OutputSymbols(), fst2->OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst2->SetProperties(kError, kError); return; } const auto props1 = fst1.Properties(kFstProperties, false); const auto props2 = fst2->Properties(kFstProperties, false); const auto start2 = fst2->Start(); if (start2 == kNoStateId) { if (props1 & kError) fst2->SetProperties(kError, kError); return; } const auto numstates2 = fst2->NumStates(); if (fst1.Properties(kExpanded, false)) { fst2->ReserveStates(numstates2 + CountStates(fst1)); } for (StateIterator<Fst<Arc>> siter(fst1); !siter.Done(); siter.Next()) { const auto s1 = siter.Value(); const auto s2 = fst2->AddState(); const auto weight = fst1.Final(s1); if (weight != Weight::Zero()) { fst2->ReserveArcs(s2, fst1.NumArcs(s1) + 1); fst2->AddArc(s2, Arc(0, 0, weight, start2)); } else { fst2->ReserveArcs(s2, fst1.NumArcs(s1)); } for (ArcIterator<Fst<Arc>> aiter(fst1, s1); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates2; fst2->AddArc(s2, arc); } } const auto start1 = fst1.Start(); if (start1 != kNoStateId) { fst2->SetStart(start1 + numstates2); fst2->SetProperties(ConcatProperties(props1, props2), kFstProperties); } else { fst2->SetStart(fst2->AddState()); } } // Computes the concatentation of two FSTs. This version modifies its // RationalFst input (in first position). template <class Arc> void Concat(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) { fst1->GetMutableImpl()->AddConcat(fst2, true); } // Computes the concatentation of two FSTs. This version modifies its // RationalFst input (in second position). template <class Arc> void Concat(const Fst<Arc> &fst1, RationalFst<Arc> *fst2) { fst2->GetMutableImpl()->AddConcat(fst1, false); } using ConcatFstOptions = RationalFstOptions; // Computes the concatenation (product) of two FSTs; this version is a delayed // FST. If FST1 transduces string x to y with weight a and FST2 transduces // string w to v with weight b, then their concatenation transduces string xw // to yv with Times(a, b). // // Complexity: // // Time: O(v1 + e1 + v2 + e2), // Space: O(v1 + v2) // // where vi is the number of states visited, and ei is the number of arcs // visited, of the ith FST. Constant time and space to visit an input state or // arc is assumed and exclusive of caching. template <class A> class ConcatFst : public RationalFst<A> { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2) { GetMutableImpl()->InitConcat(fst1, fst2); } ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2, const ConcatFstOptions &opts) : RationalFst<Arc>(opts) { GetMutableImpl()->InitConcat(fst1, fst2); } // See Fst<>::Copy() for doc. ConcatFst(const ConcatFst<Arc> &fst, bool safe = false) : RationalFst<Arc>(fst, safe) {} // Get a copy of this ConcatFst. See Fst<>::Copy() for further doc. ConcatFst<Arc> *Copy(bool safe = false) const override { return new ConcatFst<Arc>(*this, safe); } private: using ImplToFst<internal::RationalFstImpl<Arc>>::GetImpl; using ImplToFst<internal::RationalFstImpl<Arc>>::GetMutableImpl; }; // Specialization for ConcatFst. template <class Arc> class StateIterator<ConcatFst<Arc>> : public StateIterator<RationalFst<Arc>> { public: explicit StateIterator(const ConcatFst<Arc> &fst) : StateIterator<RationalFst<Arc>>(fst) {} }; // Specialization for ConcatFst. template <class Arc> class ArcIterator<ConcatFst<Arc>> : public ArcIterator<RationalFst<Arc>> { public: using StateId = typename Arc::StateId; ArcIterator(const ConcatFst<Arc> &fst, StateId s) : ArcIterator<RationalFst<Arc>>(fst, s) {} }; // Useful alias when using StdArc. using StdConcatFst = ConcatFst<StdArc>; } // namespace fst #endif // FST_CONCAT_H_ |