Blame view

tools/openfst-1.6.7/src/include/fst/disambiguate.h 20 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  // See www.openfst.org for extensive documentation on this weighted
  // finite-state transducer library.
  //
  // Functions and classes to disambiguate an FST.
  
  #ifndef FST_DISAMBIGUATE_H_
  #define FST_DISAMBIGUATE_H_
  
  #include <list>
  #include <map>
  #include <set>
  #include <utility>
  #include <vector>
  
  #include <fst/arcsort.h>
  #include <fst/compose.h>
  #include <fst/connect.h>
  #include <fst/determinize.h>
  #include <fst/dfs-visit.h>
  #include <fst/project.h>
  #include <fst/prune.h>
  #include <fst/state-map.h>
  #include <fst/state-table.h>
  #include <fst/union-find.h>
  #include <fst/verify.h>
  
  
  namespace fst {
  
  template <class Arc>
  struct DisambiguateOptions : public DeterminizeOptions<Arc> {
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    explicit DisambiguateOptions(float delta = kDelta,
                                 Weight weight = Weight::Zero(),
                                 StateId n = kNoStateId, Label label = 0)
        : DeterminizeOptions<Arc>(delta, std::move(weight), n, label,
                                  DETERMINIZE_FUNCTIONAL) {}
  };
  
  namespace internal {
  
  // A determinization filter based on a subset element relation. The relation is
  // assumed to be reflexive and symmetric.
  template <class Arc, class Relation>
  class RelationDeterminizeFilter {
   public:
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    using FilterState = IntegerFilterState<StateId>;
    using StateTuple = DeterminizeStateTuple<Arc, FilterState>;
    using Subset = typename StateTuple::Subset;
    using Element = typename StateTuple::Element;
    using LabelMap = std::multimap<Label, DeterminizeArc<StateTuple>>;
  
    // This is needed (e.g.) to go into the gallic domain for transducers; there
    // is no need to rebind the relation since its use here only depends on the
    // state IDs.
    template <class A>
    struct rebind {
      using Other = RelationDeterminizeFilter<A, Relation>;
    };
  
    explicit RelationDeterminizeFilter(const Fst<Arc> &fst)
        : fst_(fst.Copy()), r_(new Relation()), s_(kNoStateId), head_(nullptr) {}
  
    // Ownership of the relation is given to this class.
    RelationDeterminizeFilter(const Fst<Arc> &fst, Relation *r)
        : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(0) {}
  
    // Ownership of the relation is given to this class.
    RelationDeterminizeFilter(const Fst<Arc> &fst, Relation *r,
                              std::vector<StateId> *head)
        : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(head) {}
  
    // This is needed, e.g., to go into the gallic domain for transducers.
    // Ownership of the templated filter argument is given to this class.
    template <class Filter>
    RelationDeterminizeFilter(const Fst<Arc> &fst, Filter *filter)
        : fst_(fst.Copy()),
          r_(new Relation(filter->GetRelation())),
          s_(kNoStateId),
          head_(filter->GetHeadStates()) {
      delete filter;
    }
  
    // Copy constructor; the FST can be passed if it has been deep-copied.
    RelationDeterminizeFilter(const RelationDeterminizeFilter &filter,
                              const Fst<Arc> *fst = nullptr)
        : fst_(fst ? fst->Copy() : filter.fst_->Copy()),
          r_(new Relation(*filter.r_)),
          s_(kNoStateId),
          head_() {}
  
    FilterState Start() const { return FilterState(fst_->Start()); }
  
    void SetState(StateId s, const StateTuple &tuple) {
      if (s_ != s) {
        s_ = s;
        tuple_ = &tuple;
        const auto head = tuple.filter_state.GetState();
        is_final_ = fst_->Final(head) != Weight::Zero();
        if (head_) {
          if (head_->size() <= s) head_->resize(s + 1, kNoStateId);
          (*head_)[s] = head;
        }
      }
    }
  
    // Filters transition, possibly modifying label map. Returns true if arc is
    // added to label map.
    bool FilterArc(const Arc &arc, const Element &src_element,
                   const Element &dest_element, LabelMap *label_map) const;
  
    // Filters super-final transition, returning new final weight.
    Weight FilterFinal(const Weight final_weight, const Element &element) const {
      return is_final_ ? final_weight : Weight::Zero();
    }
  
    static uint64 Properties(uint64 props) {
      return props & ~(kIDeterministic | kODeterministic);
    }
  
    const Relation &GetRelation() { return *r_; }
  
    std::vector<StateId> *GetHeadStates() { return head_; }
  
   private:
    // Pairs arc labels with state tuples with possible heads and empty subsets.
    void InitLabelMap(LabelMap *label_map) const;
  
    std::unique_ptr<Fst<Arc>> fst_;  // Input FST.
    std::unique_ptr<Relation> r_;    // Relation compatible with inv. trans. fnc.
    StateId s_;                      // Current state.
    const StateTuple *tuple_;        // Current tuple.
    bool is_final_;                  // Is the current head state final?
    std::vector<StateId> *head_;     // Head state for a given state,
                                     // owned by the Disambiguator.
  };
  
  template <class Arc, class Relation>
  bool RelationDeterminizeFilter<Arc, Relation>::FilterArc(
      const Arc &arc, const Element &src_element, const Element &dest_element,
      LabelMap *label_map) const {
    bool added = false;
    if (label_map->empty()) InitLabelMap(label_map);
    // Adds element to state tuple if element state is related to tuple head.
    for (auto liter = label_map->lower_bound(arc.ilabel);
         liter != label_map->end() && liter->first == arc.ilabel; ++liter) {
      auto *dest_tuple = liter->second.dest_tuple;
      const auto dest_head = dest_tuple->filter_state.GetState();
      if ((*r_)(dest_element.state_id, dest_head)) {
        dest_tuple->subset.push_front(dest_element);
        added = true;
      }
    }
    return added;
  }
  
  template <class Arc, class Relation>
  void RelationDeterminizeFilter<Arc, Relation>::InitLabelMap(
      LabelMap *label_map) const {
    const auto src_head = tuple_->filter_state.GetState();
    Label label = kNoLabel;
    StateId nextstate = kNoStateId;
    for (ArcIterator<Fst<Arc>> aiter(*fst_, src_head); !aiter.Done();
         aiter.Next()) {
      const auto &arc = aiter.Value();
      // Continues if multiarc.
      if (arc.ilabel == label && arc.nextstate == nextstate) continue;
      DeterminizeArc<StateTuple> det_arc(arc);
      det_arc.dest_tuple->filter_state = FilterState(arc.nextstate);
      label_map->insert(std::make_pair(arc.ilabel, det_arc));
      label = arc.ilabel;
      nextstate = arc.nextstate;
    }
  }
  
  // Helper class to disambiguate an FST via Disambiguate().
  template <class Arc>
  class Disambiguator {
   public:
    using Label = typename Arc::Label;
    using StateId = typename Arc::StateId;
    using Weight = typename Arc::Weight;
  
    // IDs arcs with state ID and arc position. Arc position -1 indicates final
    // (super-final transition).
    using ArcId = std::pair<StateId, ssize_t>;
  
    Disambiguator() : error_(false) {}
  
    void Disambiguate(
        const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
        const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
      VectorFst<Arc> sfst(ifst);
      Connect(&sfst);
      ArcSort(&sfst, ArcCompare());
      PreDisambiguate(sfst, ofst, opts);
      ArcSort(ofst, ArcCompare());
      FindAmbiguities(*ofst);
      RemoveSplits(ofst);
      MarkAmbiguities();
      RemoveAmbiguities(ofst);
      if (error_) ofst->SetProperties(kError, kError);
    }
  
   private:
    // Comparison functor for comparing input labels and next states of arcs. This
    // sort order facilitates the predisambiguation.
    class ArcCompare {
     public:
      bool operator()(const Arc &arc1, const Arc &arc2) const {
        return arc1.ilabel < arc2.ilabel ||
               (arc1.ilabel == arc2.ilabel && arc1.nextstate < arc2.nextstate);
      }
  
      uint64 Properties(uint64 props) const {
        return (props & kArcSortProperties) | kILabelSorted |
               (props & kAcceptor ? kOLabelSorted : 0);
      }
    };
  
    // Comparison functor for comparing transitions represented by their arc ID.
    // This sort order facilitates ambiguity detection.
    class ArcIdCompare {
     public:
      explicit ArcIdCompare(const std::vector<StateId> &head) : head_(head) {}
  
      bool operator()(const ArcId &a1, const ArcId &a2) const {
        // Sort first by source head state...
        const auto src1 = a1.first;
        const auto src2 = a2.first;
        const auto head1 = head_[src1];
        const auto head2 = head_[src2];
        if (head1 < head2) return true;
        if (head2 < head1) return false;
        // ...then by source state...
        if (src1 < src2) return true;
        if (src2 < src1) return false;
        // ...then by position.
        return a1.second < a2.second;
      }
  
     private:
      const std::vector<StateId> &head_;
    };
  
    // A relation that determines if two states share a common future.
    class CommonFuture {
     public:
      using StateTable = GenericComposeStateTable<Arc, TrivialFilterState>;
      using StateTuple = typename StateTable::StateTuple;
  
      // Needed for compilation with DeterminizeRelationFilter.
      CommonFuture() {
        FSTERROR() << "Disambiguate::CommonFuture: FST not provided";
      }
  
      explicit CommonFuture(const Fst<Arc> &ifst) {
        using M = Matcher<Fst<Arc>>;
        ComposeFstOptions<Arc, M, NullComposeFilter<M>> opts;
        // Ensures composition is between acceptors.
        const bool trans = ifst.Properties(kNotAcceptor, true);
        const auto *fsa =
            trans ? new ProjectFst<Arc>(ifst, PROJECT_INPUT) : &ifst;
        opts.state_table = new StateTable(*fsa, *fsa);
        const ComposeFst<Arc> cfst(*fsa, *fsa, opts);
        std::vector<bool> coaccess;
        uint64 props = 0;
        SccVisitor<Arc> scc_visitor(nullptr, nullptr, &coaccess, &props);
        DfsVisit(cfst, &scc_visitor);
        for (StateId s = 0; s < coaccess.size(); ++s) {
          if (coaccess[s]) {
            related_.insert(opts.state_table->Tuple(s).StatePair());
          }
        }
        if (trans) delete fsa;
      }
  
      bool operator()(const StateId s1, StateId s2) const {
        return related_.count(std::make_pair(s1, s2)) > 0;
      }
  
     private:
      // States s1 and s2 resp. are in this relation iff they there is a
      // path from s1 to a final state that has the same label as some
      // path from s2 to a final state.
      std::set<std::pair<StateId, StateId>> related_;
    };
  
    using ArcIdMap = std::multimap<ArcId, ArcId, ArcIdCompare>;
  
    // Inserts candidate into the arc ID map.
    inline void InsertCandidate(StateId s1, StateId s2, const ArcId &a1,
                                const ArcId &a2) {
      candidates_->insert(head_[s1] > head_[s2] ? std::make_pair(a1, a2)
                                                : std::make_pair(a2, a1));
    }
  
    // Returns the arc corresponding to ArcId a.
    static Arc GetArc(const Fst<Arc> &fst, ArcId aid) {
      if (aid.second == -1) {  // Returns super-final transition.
        return Arc(kNoLabel, kNoLabel, fst.Final(aid.first), kNoStateId);
      } else {
        ArcIterator<Fst<Arc>> aiter(fst, aid.first);
        aiter.Seek(aid.second);
        return aiter.Value();
      }
    }
  
    // Outputs an equivalent FST whose states are subsets of states that have a
    // future path in common.
    void PreDisambiguate(const ExpandedFst<Arc> &ifst, MutableFst<Arc> *ofst,
                         const DisambiguateOptions<Arc> &opts);
  
    // Finds transitions that are ambiguous candidates in the result of
    // PreDisambiguate.
    void FindAmbiguities(const ExpandedFst<Arc> &fst);
  
    // Finds transition pairs that are ambiguous candidates from two specified
    // source states.
    void FindAmbiguousPairs(const ExpandedFst<Arc> &fst, StateId s1, StateId s2);
  
    // Marks ambiguous transitions to be removed.
    void MarkAmbiguities();
  
    // Deletes spurious ambiguous transitions (due to quantization).
    void RemoveSplits(MutableFst<Arc> *ofst);
  
    // Deletes actual ambiguous transitions.
    void RemoveAmbiguities(MutableFst<Arc> *ofst);
  
    // States s1 and s2 are in this relation iff there is a path from the initial
    // state to s1 that has the same label as some path from the initial state to
    // s2. We store only state pairs s1, s2 such that s1 <= s2.
    std::set<std::pair<StateId, StateId>> coreachable_;
  
    // Queue of disambiguation-related states to be processed. We store only
    // state pairs s1, s2 such that s1 <= s2.
    std::list<std::pair<StateId, StateId>> queue_;
  
    // Head state in the pre-disambiguation for a given state.
    std::vector<StateId> head_;
  
    // Maps from a candidate ambiguous arc A to each ambiguous candidate arc B
    // with the same label and destination state as A, whose source state s' is
    // coreachable with the source state s of A, and for which head(s') < head(s).
    std::unique_ptr<ArcIdMap> candidates_;
  
    // Set of ambiguous transitions to be removed.
    std::set<ArcId> ambiguous_;
  
    // States to merge due to quantization issues.
    std::unique_ptr<UnionFind<StateId>> merge_;
    // Marks error condition.
    bool error_;
  
    Disambiguator(const Disambiguator &) = delete;
    Disambiguator &operator=(const Disambiguator &) = delete;
  };
  
  template <class Arc>
  void Disambiguator<Arc>::PreDisambiguate(const ExpandedFst<Arc> &ifst,
                                           MutableFst<Arc> *ofst,
                                           const DisambiguateOptions<Arc> &opts) {
    using CommonDivisor = DefaultCommonDivisor<Weight>;
    using Filter = RelationDeterminizeFilter<Arc, CommonFuture>;
    // Subset elements with states s1 and s2 (resp.) are in this relation iff they
    // there is a path from s1 to a final state that has the same label as some
    // path from s2 to a final state.
    auto *common_future = new CommonFuture(ifst);
    DeterminizeFstOptions<Arc, CommonDivisor, Filter> nopts;
    nopts.delta = opts.delta;
    nopts.subsequential_label = opts.subsequential_label;
    nopts.filter = new Filter(ifst, common_future, &head_);
    // The filter takes ownership of 'common_future', and determinization takes
    // ownership of the filter itself.
    nopts.gc_limit = 0;  // Cache only the last state for fastest copy.
    if (opts.weight_threshold != Weight::Zero() ||
        opts.state_threshold != kNoStateId) {
      /* TODO(riley): fails regression test; understand why
      if (ifst.Properties(kAcceptor, true)) {
        std::vector<Weight> idistance, odistance;
        ShortestDistance(ifst, &idistance, true);
        DeterminizeFst<Arc> dfst(ifst, &idistance, &odistance, nopts);
        PruneOptions< Arc, AnyArcFilter<Arc>> popts(opts.weight_threshold,
                                                     opts.state_threshold,
                                                     AnyArcFilter<Arc>(),
                                                     &odistance);
        Prune(dfst, ofst, popts);
        } else */ {
        *ofst = DeterminizeFst<Arc>(ifst, nopts);
        Prune(ofst, opts.weight_threshold, opts.state_threshold);
      }
    } else {
      *ofst = DeterminizeFst<Arc>(ifst, nopts);
    }
    head_.resize(ofst->NumStates(), kNoStateId);
  }
  
  template <class Arc>
  void Disambiguator<Arc>::FindAmbiguities(const ExpandedFst<Arc> &fst) {
    if (fst.Start() == kNoStateId) return;
    candidates_.reset(new ArcIdMap(ArcIdCompare(head_)));
    const auto start_pr = std::make_pair(fst.Start(), fst.Start());
    coreachable_.insert(start_pr);
    queue_.push_back(start_pr);
    while (!queue_.empty()) {
      const auto &pr = queue_.front();
      const auto s1 = pr.first;
      const auto s2 = pr.second;
      queue_.pop_front();
      FindAmbiguousPairs(fst, s1, s2);
    }
  }
  
  template <class Arc>
  void Disambiguator<Arc>::FindAmbiguousPairs(const ExpandedFst<Arc> &fst,
                                              StateId s1, StateId s2) {
    if (fst.NumArcs(s2) > fst.NumArcs(s1)) FindAmbiguousPairs(fst, s2, s1);
    SortedMatcher<Fst<Arc>> matcher(fst, MATCH_INPUT);
    matcher.SetState(s2);
    for (ArcIterator<Fst<Arc>> aiter(fst, s1); !aiter.Done(); aiter.Next()) {
      const auto &arc1 = aiter.Value();
      const ArcId a1(s1, aiter.Position());
      if (matcher.Find(arc1.ilabel)) {
        for (; !matcher.Done(); matcher.Next()) {
          const auto &arc2 = matcher.Value();
          // Continues on implicit epsilon match.
          if (arc2.ilabel == kNoLabel) continue;
          const ArcId a2(s2, matcher.Position());
          // Actual transition is ambiguous.
          if (s1 != s2 && arc1.nextstate == arc2.nextstate) {
            InsertCandidate(s1, s2, a1, a2);
          }
          const auto spr = arc1.nextstate <= arc2.nextstate
                               ? std::make_pair(arc1.nextstate, arc2.nextstate)
                               : std::make_pair(arc2.nextstate, arc1.nextstate);
          // Not already marked as coreachable?
          if (coreachable_.insert(spr).second) {
            // Only possible if state split by quantization issues.
            if (spr.first != spr.second &&
                head_[spr.first] == head_[spr.second]) {
              if (!merge_) {
                merge_.reset(new UnionFind<StateId>(fst.NumStates(), kNoStateId));
                merge_->MakeAllSet(fst.NumStates());
              }
              merge_->Union(spr.first, spr.second);
            } else {
              queue_.push_back(spr);
            }
          }
        }
      }
    }
    // Super-final transition is ambiguous.
    if (s1 != s2 && fst.Final(s1) != Weight::Zero() &&
        fst.Final(s2) != Weight::Zero()) {
      const ArcId a1(s1, -1);
      const ArcId a2(s2, -1);
      InsertCandidate(s1, s2, a1, a2);
    }
  }
  
  template <class Arc>
  void Disambiguator<Arc>::MarkAmbiguities() {
    if (!candidates_) return;
    for (auto it = candidates_->begin(); it != candidates_->end(); ++it) {
      const auto a = it->first;
      const auto b = it->second;
      // If b is not to be removed, then a is.
      if (ambiguous_.count(b) == 0) ambiguous_.insert(a);
    }
    coreachable_.clear();
    candidates_.reset();
  }
  
  template <class Arc>
  void Disambiguator<Arc>::RemoveSplits(MutableFst<Arc> *ofst) {
    if (!merge_) return;
    // Merges split states to remove spurious ambiguities.
    for (StateIterator<MutableFst<Arc>> siter(*ofst); !siter.Done();
         siter.Next()) {
      for (MutableArcIterator<MutableFst<Arc>> aiter(ofst, siter.Value());
           !aiter.Done(); aiter.Next()) {
        auto arc = aiter.Value();
        const auto nextstate = merge_->FindSet(arc.nextstate);
        if (nextstate != arc.nextstate) {
          arc.nextstate = nextstate;
          aiter.SetValue(arc);
        }
      }
    }
    // Repeats search for actual ambiguities on modified FST.
    coreachable_.clear();
    merge_.reset();
    candidates_.reset();
    FindAmbiguities(*ofst);
    if (merge_) {  // Shouldn't get here; sanity test.
      FSTERROR() << "Disambiguate: Unable to remove spurious ambiguities";
      error_ = true;
      return;
    }
  }
  
  template <class Arc>
  void Disambiguator<Arc>::RemoveAmbiguities(MutableFst<Arc> *ofst) {
    if (ambiguous_.empty()) return;
    // Adds dead state to redirect ambiguous transitions to be removed.
    const auto dead = ofst->AddState();
    for (auto it = ambiguous_.begin(); it != ambiguous_.end(); ++it) {
      const auto pos = it->second;
      if (pos >= 0) {  // Actual transition.
        MutableArcIterator<MutableFst<Arc>> aiter(ofst, it->first);
        aiter.Seek(pos);
        auto arc = aiter.Value();
        arc.nextstate = dead;
        aiter.SetValue(arc);
      } else {  // Super-final transition.
        ofst->SetFinal(it->first, Weight::Zero());
      }
    }
    Connect(ofst);
    ambiguous_.clear();
  }
  
  }  // namespace internal
  
  // Disambiguates a weighted FST. This version writes the disambiguated FST to an
  // output MutableFst. The result will be an equivalent FST that has the
  // property that there are not two distinct paths from the initial state to a
  // final state with the same input labeling.
  //
  // The weights must be (weakly) left divisible (valid for Tropical and
  // LogWeight).
  //
  // Complexity:
  //
  //   Disambiguable: exponential (polynomial in the size of the output).
  //   Non-disambiguable: does not terminate.
  //
  // The disambiguable transducers include all automata and functional transducers
  // that are unweighted or that are acyclic or that are unambiguous.
  //
  // For more information, see:
  //
  // Mohri, M. and Riley, M. 2015. On the disambiguation of weighted automata.
  // In CIAA, pages 263-278.
  template <class Arc>
  void Disambiguate(
      const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
      const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
    internal::Disambiguator<Arc> disambiguator;
    disambiguator.Disambiguate(ifst, ofst, opts);
  }
  
  }  // namespace fst
  
  #endif  // FST_DISAMBIGUATE_H_