disambiguate.h 20 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to disambiguate an FST.

#ifndef FST_DISAMBIGUATE_H_
#define FST_DISAMBIGUATE_H_

#include <list>
#include <map>
#include <set>
#include <utility>
#include <vector>

#include <fst/arcsort.h>
#include <fst/compose.h>
#include <fst/connect.h>
#include <fst/determinize.h>
#include <fst/dfs-visit.h>
#include <fst/project.h>
#include <fst/prune.h>
#include <fst/state-map.h>
#include <fst/state-table.h>
#include <fst/union-find.h>
#include <fst/verify.h>


namespace fst {

template <class Arc>
struct DisambiguateOptions : public DeterminizeOptions<Arc> {
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  explicit DisambiguateOptions(float delta = kDelta,
                               Weight weight = Weight::Zero(),
                               StateId n = kNoStateId, Label label = 0)
      : DeterminizeOptions<Arc>(delta, std::move(weight), n, label,
                                DETERMINIZE_FUNCTIONAL) {}
};

namespace internal {

// A determinization filter based on a subset element relation. The relation is
// assumed to be reflexive and symmetric.
template <class Arc, class Relation>
class RelationDeterminizeFilter {
 public:
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using FilterState = IntegerFilterState<StateId>;
  using StateTuple = DeterminizeStateTuple<Arc, FilterState>;
  using Subset = typename StateTuple::Subset;
  using Element = typename StateTuple::Element;
  using LabelMap = std::multimap<Label, DeterminizeArc<StateTuple>>;

  // This is needed (e.g.) to go into the gallic domain for transducers; there
  // is no need to rebind the relation since its use here only depends on the
  // state IDs.
  template <class A>
  struct rebind {
    using Other = RelationDeterminizeFilter<A, Relation>;
  };

  explicit RelationDeterminizeFilter(const Fst<Arc> &fst)
      : fst_(fst.Copy()), r_(new Relation()), s_(kNoStateId), head_(nullptr) {}

  // Ownership of the relation is given to this class.
  RelationDeterminizeFilter(const Fst<Arc> &fst, Relation *r)
      : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(0) {}

  // Ownership of the relation is given to this class.
  RelationDeterminizeFilter(const Fst<Arc> &fst, Relation *r,
                            std::vector<StateId> *head)
      : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(head) {}

  // This is needed, e.g., to go into the gallic domain for transducers.
  // Ownership of the templated filter argument is given to this class.
  template <class Filter>
  RelationDeterminizeFilter(const Fst<Arc> &fst, Filter *filter)
      : fst_(fst.Copy()),
        r_(new Relation(filter->GetRelation())),
        s_(kNoStateId),
        head_(filter->GetHeadStates()) {
    delete filter;
  }

  // Copy constructor; the FST can be passed if it has been deep-copied.
  RelationDeterminizeFilter(const RelationDeterminizeFilter &filter,
                            const Fst<Arc> *fst = nullptr)
      : fst_(fst ? fst->Copy() : filter.fst_->Copy()),
        r_(new Relation(*filter.r_)),
        s_(kNoStateId),
        head_() {}

  FilterState Start() const { return FilterState(fst_->Start()); }

  void SetState(StateId s, const StateTuple &tuple) {
    if (s_ != s) {
      s_ = s;
      tuple_ = &tuple;
      const auto head = tuple.filter_state.GetState();
      is_final_ = fst_->Final(head) != Weight::Zero();
      if (head_) {
        if (head_->size() <= s) head_->resize(s + 1, kNoStateId);
        (*head_)[s] = head;
      }
    }
  }

  // Filters transition, possibly modifying label map. Returns true if arc is
  // added to label map.
  bool FilterArc(const Arc &arc, const Element &src_element,
                 const Element &dest_element, LabelMap *label_map) const;

  // Filters super-final transition, returning new final weight.
  Weight FilterFinal(const Weight final_weight, const Element &element) const {
    return is_final_ ? final_weight : Weight::Zero();
  }

  static uint64 Properties(uint64 props) {
    return props & ~(kIDeterministic | kODeterministic);
  }

  const Relation &GetRelation() { return *r_; }

  std::vector<StateId> *GetHeadStates() { return head_; }

 private:
  // Pairs arc labels with state tuples with possible heads and empty subsets.
  void InitLabelMap(LabelMap *label_map) const;

  std::unique_ptr<Fst<Arc>> fst_;  // Input FST.
  std::unique_ptr<Relation> r_;    // Relation compatible with inv. trans. fnc.
  StateId s_;                      // Current state.
  const StateTuple *tuple_;        // Current tuple.
  bool is_final_;                  // Is the current head state final?
  std::vector<StateId> *head_;     // Head state for a given state,
                                   // owned by the Disambiguator.
};

template <class Arc, class Relation>
bool RelationDeterminizeFilter<Arc, Relation>::FilterArc(
    const Arc &arc, const Element &src_element, const Element &dest_element,
    LabelMap *label_map) const {
  bool added = false;
  if (label_map->empty()) InitLabelMap(label_map);
  // Adds element to state tuple if element state is related to tuple head.
  for (auto liter = label_map->lower_bound(arc.ilabel);
       liter != label_map->end() && liter->first == arc.ilabel; ++liter) {
    auto *dest_tuple = liter->second.dest_tuple;
    const auto dest_head = dest_tuple->filter_state.GetState();
    if ((*r_)(dest_element.state_id, dest_head)) {
      dest_tuple->subset.push_front(dest_element);
      added = true;
    }
  }
  return added;
}

template <class Arc, class Relation>
void RelationDeterminizeFilter<Arc, Relation>::InitLabelMap(
    LabelMap *label_map) const {
  const auto src_head = tuple_->filter_state.GetState();
  Label label = kNoLabel;
  StateId nextstate = kNoStateId;
  for (ArcIterator<Fst<Arc>> aiter(*fst_, src_head); !aiter.Done();
       aiter.Next()) {
    const auto &arc = aiter.Value();
    // Continues if multiarc.
    if (arc.ilabel == label && arc.nextstate == nextstate) continue;
    DeterminizeArc<StateTuple> det_arc(arc);
    det_arc.dest_tuple->filter_state = FilterState(arc.nextstate);
    label_map->insert(std::make_pair(arc.ilabel, det_arc));
    label = arc.ilabel;
    nextstate = arc.nextstate;
  }
}

// Helper class to disambiguate an FST via Disambiguate().
template <class Arc>
class Disambiguator {
 public:
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  // IDs arcs with state ID and arc position. Arc position -1 indicates final
  // (super-final transition).
  using ArcId = std::pair<StateId, ssize_t>;

  Disambiguator() : error_(false) {}

  void Disambiguate(
      const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
      const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
    VectorFst<Arc> sfst(ifst);
    Connect(&sfst);
    ArcSort(&sfst, ArcCompare());
    PreDisambiguate(sfst, ofst, opts);
    ArcSort(ofst, ArcCompare());
    FindAmbiguities(*ofst);
    RemoveSplits(ofst);
    MarkAmbiguities();
    RemoveAmbiguities(ofst);
    if (error_) ofst->SetProperties(kError, kError);
  }

 private:
  // Comparison functor for comparing input labels and next states of arcs. This
  // sort order facilitates the predisambiguation.
  class ArcCompare {
   public:
    bool operator()(const Arc &arc1, const Arc &arc2) const {
      return arc1.ilabel < arc2.ilabel ||
             (arc1.ilabel == arc2.ilabel && arc1.nextstate < arc2.nextstate);
    }

    uint64 Properties(uint64 props) const {
      return (props & kArcSortProperties) | kILabelSorted |
             (props & kAcceptor ? kOLabelSorted : 0);
    }
  };

  // Comparison functor for comparing transitions represented by their arc ID.
  // This sort order facilitates ambiguity detection.
  class ArcIdCompare {
   public:
    explicit ArcIdCompare(const std::vector<StateId> &head) : head_(head) {}

    bool operator()(const ArcId &a1, const ArcId &a2) const {
      // Sort first by source head state...
      const auto src1 = a1.first;
      const auto src2 = a2.first;
      const auto head1 = head_[src1];
      const auto head2 = head_[src2];
      if (head1 < head2) return true;
      if (head2 < head1) return false;
      // ...then by source state...
      if (src1 < src2) return true;
      if (src2 < src1) return false;
      // ...then by position.
      return a1.second < a2.second;
    }

   private:
    const std::vector<StateId> &head_;
  };

  // A relation that determines if two states share a common future.
  class CommonFuture {
   public:
    using StateTable = GenericComposeStateTable<Arc, TrivialFilterState>;
    using StateTuple = typename StateTable::StateTuple;

    // Needed for compilation with DeterminizeRelationFilter.
    CommonFuture() {
      FSTERROR() << "Disambiguate::CommonFuture: FST not provided";
    }

    explicit CommonFuture(const Fst<Arc> &ifst) {
      using M = Matcher<Fst<Arc>>;
      ComposeFstOptions<Arc, M, NullComposeFilter<M>> opts;
      // Ensures composition is between acceptors.
      const bool trans = ifst.Properties(kNotAcceptor, true);
      const auto *fsa =
          trans ? new ProjectFst<Arc>(ifst, PROJECT_INPUT) : &ifst;
      opts.state_table = new StateTable(*fsa, *fsa);
      const ComposeFst<Arc> cfst(*fsa, *fsa, opts);
      std::vector<bool> coaccess;
      uint64 props = 0;
      SccVisitor<Arc> scc_visitor(nullptr, nullptr, &coaccess, &props);
      DfsVisit(cfst, &scc_visitor);
      for (StateId s = 0; s < coaccess.size(); ++s) {
        if (coaccess[s]) {
          related_.insert(opts.state_table->Tuple(s).StatePair());
        }
      }
      if (trans) delete fsa;
    }

    bool operator()(const StateId s1, StateId s2) const {
      return related_.count(std::make_pair(s1, s2)) > 0;
    }

   private:
    // States s1 and s2 resp. are in this relation iff they there is a
    // path from s1 to a final state that has the same label as some
    // path from s2 to a final state.
    std::set<std::pair<StateId, StateId>> related_;
  };

  using ArcIdMap = std::multimap<ArcId, ArcId, ArcIdCompare>;

  // Inserts candidate into the arc ID map.
  inline void InsertCandidate(StateId s1, StateId s2, const ArcId &a1,
                              const ArcId &a2) {
    candidates_->insert(head_[s1] > head_[s2] ? std::make_pair(a1, a2)
                                              : std::make_pair(a2, a1));
  }

  // Returns the arc corresponding to ArcId a.
  static Arc GetArc(const Fst<Arc> &fst, ArcId aid) {
    if (aid.second == -1) {  // Returns super-final transition.
      return Arc(kNoLabel, kNoLabel, fst.Final(aid.first), kNoStateId);
    } else {
      ArcIterator<Fst<Arc>> aiter(fst, aid.first);
      aiter.Seek(aid.second);
      return aiter.Value();
    }
  }

  // Outputs an equivalent FST whose states are subsets of states that have a
  // future path in common.
  void PreDisambiguate(const ExpandedFst<Arc> &ifst, MutableFst<Arc> *ofst,
                       const DisambiguateOptions<Arc> &opts);

  // Finds transitions that are ambiguous candidates in the result of
  // PreDisambiguate.
  void FindAmbiguities(const ExpandedFst<Arc> &fst);

  // Finds transition pairs that are ambiguous candidates from two specified
  // source states.
  void FindAmbiguousPairs(const ExpandedFst<Arc> &fst, StateId s1, StateId s2);

  // Marks ambiguous transitions to be removed.
  void MarkAmbiguities();

  // Deletes spurious ambiguous transitions (due to quantization).
  void RemoveSplits(MutableFst<Arc> *ofst);

  // Deletes actual ambiguous transitions.
  void RemoveAmbiguities(MutableFst<Arc> *ofst);

  // States s1 and s2 are in this relation iff there is a path from the initial
  // state to s1 that has the same label as some path from the initial state to
  // s2. We store only state pairs s1, s2 such that s1 <= s2.
  std::set<std::pair<StateId, StateId>> coreachable_;

  // Queue of disambiguation-related states to be processed. We store only
  // state pairs s1, s2 such that s1 <= s2.
  std::list<std::pair<StateId, StateId>> queue_;

  // Head state in the pre-disambiguation for a given state.
  std::vector<StateId> head_;

  // Maps from a candidate ambiguous arc A to each ambiguous candidate arc B
  // with the same label and destination state as A, whose source state s' is
  // coreachable with the source state s of A, and for which head(s') < head(s).
  std::unique_ptr<ArcIdMap> candidates_;

  // Set of ambiguous transitions to be removed.
  std::set<ArcId> ambiguous_;

  // States to merge due to quantization issues.
  std::unique_ptr<UnionFind<StateId>> merge_;
  // Marks error condition.
  bool error_;

  Disambiguator(const Disambiguator &) = delete;
  Disambiguator &operator=(const Disambiguator &) = delete;
};

template <class Arc>
void Disambiguator<Arc>::PreDisambiguate(const ExpandedFst<Arc> &ifst,
                                         MutableFst<Arc> *ofst,
                                         const DisambiguateOptions<Arc> &opts) {
  using CommonDivisor = DefaultCommonDivisor<Weight>;
  using Filter = RelationDeterminizeFilter<Arc, CommonFuture>;
  // Subset elements with states s1 and s2 (resp.) are in this relation iff they
  // there is a path from s1 to a final state that has the same label as some
  // path from s2 to a final state.
  auto *common_future = new CommonFuture(ifst);
  DeterminizeFstOptions<Arc, CommonDivisor, Filter> nopts;
  nopts.delta = opts.delta;
  nopts.subsequential_label = opts.subsequential_label;
  nopts.filter = new Filter(ifst, common_future, &head_);
  // The filter takes ownership of 'common_future', and determinization takes
  // ownership of the filter itself.
  nopts.gc_limit = 0;  // Cache only the last state for fastest copy.
  if (opts.weight_threshold != Weight::Zero() ||
      opts.state_threshold != kNoStateId) {
    /* TODO(riley): fails regression test; understand why
    if (ifst.Properties(kAcceptor, true)) {
      std::vector<Weight> idistance, odistance;
      ShortestDistance(ifst, &idistance, true);
      DeterminizeFst<Arc> dfst(ifst, &idistance, &odistance, nopts);
      PruneOptions< Arc, AnyArcFilter<Arc>> popts(opts.weight_threshold,
                                                   opts.state_threshold,
                                                   AnyArcFilter<Arc>(),
                                                   &odistance);
      Prune(dfst, ofst, popts);
      } else */ {
      *ofst = DeterminizeFst<Arc>(ifst, nopts);
      Prune(ofst, opts.weight_threshold, opts.state_threshold);
    }
  } else {
    *ofst = DeterminizeFst<Arc>(ifst, nopts);
  }
  head_.resize(ofst->NumStates(), kNoStateId);
}

template <class Arc>
void Disambiguator<Arc>::FindAmbiguities(const ExpandedFst<Arc> &fst) {
  if (fst.Start() == kNoStateId) return;
  candidates_.reset(new ArcIdMap(ArcIdCompare(head_)));
  const auto start_pr = std::make_pair(fst.Start(), fst.Start());
  coreachable_.insert(start_pr);
  queue_.push_back(start_pr);
  while (!queue_.empty()) {
    const auto &pr = queue_.front();
    const auto s1 = pr.first;
    const auto s2 = pr.second;
    queue_.pop_front();
    FindAmbiguousPairs(fst, s1, s2);
  }
}

template <class Arc>
void Disambiguator<Arc>::FindAmbiguousPairs(const ExpandedFst<Arc> &fst,
                                            StateId s1, StateId s2) {
  if (fst.NumArcs(s2) > fst.NumArcs(s1)) FindAmbiguousPairs(fst, s2, s1);
  SortedMatcher<Fst<Arc>> matcher(fst, MATCH_INPUT);
  matcher.SetState(s2);
  for (ArcIterator<Fst<Arc>> aiter(fst, s1); !aiter.Done(); aiter.Next()) {
    const auto &arc1 = aiter.Value();
    const ArcId a1(s1, aiter.Position());
    if (matcher.Find(arc1.ilabel)) {
      for (; !matcher.Done(); matcher.Next()) {
        const auto &arc2 = matcher.Value();
        // Continues on implicit epsilon match.
        if (arc2.ilabel == kNoLabel) continue;
        const ArcId a2(s2, matcher.Position());
        // Actual transition is ambiguous.
        if (s1 != s2 && arc1.nextstate == arc2.nextstate) {
          InsertCandidate(s1, s2, a1, a2);
        }
        const auto spr = arc1.nextstate <= arc2.nextstate
                             ? std::make_pair(arc1.nextstate, arc2.nextstate)
                             : std::make_pair(arc2.nextstate, arc1.nextstate);
        // Not already marked as coreachable?
        if (coreachable_.insert(spr).second) {
          // Only possible if state split by quantization issues.
          if (spr.first != spr.second &&
              head_[spr.first] == head_[spr.second]) {
            if (!merge_) {
              merge_.reset(new UnionFind<StateId>(fst.NumStates(), kNoStateId));
              merge_->MakeAllSet(fst.NumStates());
            }
            merge_->Union(spr.first, spr.second);
          } else {
            queue_.push_back(spr);
          }
        }
      }
    }
  }
  // Super-final transition is ambiguous.
  if (s1 != s2 && fst.Final(s1) != Weight::Zero() &&
      fst.Final(s2) != Weight::Zero()) {
    const ArcId a1(s1, -1);
    const ArcId a2(s2, -1);
    InsertCandidate(s1, s2, a1, a2);
  }
}

template <class Arc>
void Disambiguator<Arc>::MarkAmbiguities() {
  if (!candidates_) return;
  for (auto it = candidates_->begin(); it != candidates_->end(); ++it) {
    const auto a = it->first;
    const auto b = it->second;
    // If b is not to be removed, then a is.
    if (ambiguous_.count(b) == 0) ambiguous_.insert(a);
  }
  coreachable_.clear();
  candidates_.reset();
}

template <class Arc>
void Disambiguator<Arc>::RemoveSplits(MutableFst<Arc> *ofst) {
  if (!merge_) return;
  // Merges split states to remove spurious ambiguities.
  for (StateIterator<MutableFst<Arc>> siter(*ofst); !siter.Done();
       siter.Next()) {
    for (MutableArcIterator<MutableFst<Arc>> aiter(ofst, siter.Value());
         !aiter.Done(); aiter.Next()) {
      auto arc = aiter.Value();
      const auto nextstate = merge_->FindSet(arc.nextstate);
      if (nextstate != arc.nextstate) {
        arc.nextstate = nextstate;
        aiter.SetValue(arc);
      }
    }
  }
  // Repeats search for actual ambiguities on modified FST.
  coreachable_.clear();
  merge_.reset();
  candidates_.reset();
  FindAmbiguities(*ofst);
  if (merge_) {  // Shouldn't get here; sanity test.
    FSTERROR() << "Disambiguate: Unable to remove spurious ambiguities";
    error_ = true;
    return;
  }
}

template <class Arc>
void Disambiguator<Arc>::RemoveAmbiguities(MutableFst<Arc> *ofst) {
  if (ambiguous_.empty()) return;
  // Adds dead state to redirect ambiguous transitions to be removed.
  const auto dead = ofst->AddState();
  for (auto it = ambiguous_.begin(); it != ambiguous_.end(); ++it) {
    const auto pos = it->second;
    if (pos >= 0) {  // Actual transition.
      MutableArcIterator<MutableFst<Arc>> aiter(ofst, it->first);
      aiter.Seek(pos);
      auto arc = aiter.Value();
      arc.nextstate = dead;
      aiter.SetValue(arc);
    } else {  // Super-final transition.
      ofst->SetFinal(it->first, Weight::Zero());
    }
  }
  Connect(ofst);
  ambiguous_.clear();
}

}  // namespace internal

// Disambiguates a weighted FST. This version writes the disambiguated FST to an
// output MutableFst. The result will be an equivalent FST that has the
// property that there are not two distinct paths from the initial state to a
// final state with the same input labeling.
//
// The weights must be (weakly) left divisible (valid for Tropical and
// LogWeight).
//
// Complexity:
//
//   Disambiguable: exponential (polynomial in the size of the output).
//   Non-disambiguable: does not terminate.
//
// The disambiguable transducers include all automata and functional transducers
// that are unweighted or that are acyclic or that are unambiguous.
//
// For more information, see:
//
// Mohri, M. and Riley, M. 2015. On the disambiguation of weighted automata.
// In CIAA, pages 263-278.
template <class Arc>
void Disambiguate(
    const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
    const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
  internal::Disambiguator<Arc> disambiguator;
  disambiguator.Disambiguate(ifst, ofst, opts);
}

}  // namespace fst

#endif  // FST_DISAMBIGUATE_H_