Blame view
tools/openfst-1.6.7/src/include/fst/rmepsilon.h
17.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes that implemement epsilon-removal. #ifndef FST_RMEPSILON_H_ #define FST_RMEPSILON_H_ #include <forward_list> #include <stack> #include <string> #include <unordered_map> #include <utility> #include <vector> #include <fst/log.h> #include <fst/arcfilter.h> #include <fst/cache.h> #include <fst/connect.h> #include <fst/factor-weight.h> #include <fst/invert.h> #include <fst/prune.h> #include <fst/queue.h> #include <fst/shortest-distance.h> #include <fst/topsort.h> namespace fst { template <class Arc, class Queue> class RmEpsilonOptions : public ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc>> { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; bool connect; // Connect output Weight weight_threshold; // Pruning weight threshold. StateId state_threshold; // Pruning state threshold. explicit RmEpsilonOptions(Queue *queue, float delta = kShortestDelta, bool connect = true, Weight weight_threshold = Weight::Zero(), StateId state_threshold = kNoStateId) : ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc>>( queue, EpsilonArcFilter<Arc>(), kNoStateId, delta), connect(connect), weight_threshold(std::move(weight_threshold)), state_threshold(state_threshold) {} }; namespace internal { // Computation state of the epsilon-removal algorithm. template <class Arc, class Queue> class RmEpsilonState { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; RmEpsilonState(const Fst<Arc> &fst, std::vector<Weight> *distance, const RmEpsilonOptions<Arc, Queue> &opts) : fst_(fst), distance_(distance), sd_state_(fst_, distance, opts, true), expand_id_(0) {} void Expand(StateId s); std::vector<Arc> &Arcs() { return arcs_; } const Weight &Final() const { return final_; } bool Error() const { return sd_state_.Error(); } private: struct Element { Label ilabel; Label olabel; StateId nextstate; Element() {} Element(Label ilabel, Label olabel, StateId nexstate) : ilabel(ilabel), olabel(olabel), nextstate(nexstate) {} }; struct ElementHash { public: size_t operator()(const Element &element) const { static constexpr size_t prime0 = 7853; static constexpr size_t prime1 = 7867; return static_cast<size_t>(element.nextstate) + static_cast<size_t>(element.ilabel) * prime0 + static_cast<size_t>(element.olabel) * prime1; } }; class ElementEqual { public: bool operator()(const Element &e1, const Element &e2) const { return (e1.ilabel == e2.ilabel) && (e1.olabel == e2.olabel) && (e1.nextstate == e2.nextstate); } }; using ElementMap = std::unordered_map<Element, std::pair<StateId, size_t>, ElementHash, ElementEqual>; const Fst<Arc> &fst_; // Distance from state being expanded in epsilon-closure. std::vector<Weight> *distance_; // Shortest distance algorithm computation state. internal::ShortestDistanceState<Arc, Queue, EpsilonArcFilter<Arc>> sd_state_; // Maps an element to a pair corresponding to a position in the arcs vector // of the state being expanded. The element corresopnds to the position in // the arcs_ vector if p.first is equal to the state being expanded. ElementMap element_map_; EpsilonArcFilter<Arc> eps_filter_; std::stack<StateId> eps_queue_; // Queue used to visit the epsilon-closure. std::vector<bool> visited_; // True if the state has been visited. std::forward_list<StateId> visited_states_; // List of visited states. std::vector<Arc> arcs_; // Arcs of state being expanded. Weight final_; // Final weight of state being expanded. StateId expand_id_; // Unique ID for each call to Expand RmEpsilonState(const RmEpsilonState &) = delete; RmEpsilonState &operator=(const RmEpsilonState &) = delete; }; template <class Arc, class Queue> void RmEpsilonState<Arc, Queue>::Expand(typename Arc::StateId source) { final_ = Weight::Zero(); arcs_.clear(); sd_state_.ShortestDistance(source); if (sd_state_.Error()) return; eps_queue_.push(source); while (!eps_queue_.empty()) { const auto state = eps_queue_.top(); eps_queue_.pop(); while (visited_.size() <= state) visited_.push_back(false); if (visited_[state]) continue; visited_[state] = true; visited_states_.push_front(state); for (ArcIterator<Fst<Arc>> aiter(fst_, state); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.weight = Times((*distance_)[state], arc.weight); if (eps_filter_(arc)) { while (visited_.size() <= arc.nextstate) visited_.push_back(false); if (!visited_[arc.nextstate]) eps_queue_.push(arc.nextstate); } else { const Element element(arc.ilabel, arc.olabel, arc.nextstate); auto insert_result = element_map_.insert( std::make_pair(element, std::make_pair(expand_id_, arcs_.size()))); if (insert_result.second) { arcs_.push_back(arc); } else { if (insert_result.first->second.first == expand_id_) { auto &weight = arcs_[insert_result.first->second.second].weight; weight = Plus(weight, arc.weight); } else { insert_result.first->second.first = expand_id_; insert_result.first->second.second = arcs_.size(); arcs_.push_back(arc); } } } } final_ = Plus(final_, Times((*distance_)[state], fst_.Final(state))); } while (!visited_states_.empty()) { visited_[visited_states_.front()] = false; visited_states_.pop_front(); } ++expand_id_; } } // namespace internal // Removes epsilon-transitions (when both the input and output label are an // epsilon) from a transducer. The result will be an equivalent FST that has no // such epsilon transitions. This version modifies its input. It allows fine // control via the options argument; see below for a simpler interface. // // The distance vector will be used to hold the shortest distances during the // epsilon-closure computation. The state queue discipline and convergence delta // are taken in the options argument. template <class Arc, class Queue> void RmEpsilon(MutableFst<Arc> *fst, std::vector<typename Arc::Weight> *distance, const RmEpsilonOptions<Arc, Queue> &opts) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; if (fst->Start() == kNoStateId) return; // noneps_in[s] will be set to true iff s admits a non-epsilon incoming // transition or is the start state. std::vector<bool> noneps_in(fst->NumStates(), false); noneps_in[fst->Start()] = true; for (size_t i = 0; i < fst->NumStates(); ++i) { for (ArcIterator<Fst<Arc>> aiter(*fst, i); !aiter.Done(); aiter.Next()) { const auto &arc = aiter.Value(); if (arc.ilabel != 0 || arc.olabel != 0) { noneps_in[arc.nextstate] = true; } } } // States sorted in topological order when (acyclic) or generic topological // order (cyclic). std::vector<StateId> states; states.reserve(fst->NumStates()); if (fst->Properties(kTopSorted, false) & kTopSorted) { for (size_t i = 0; i < fst->NumStates(); i++) states.push_back(i); } else if (fst->Properties(kAcyclic, false) & kAcyclic) { std::vector<StateId> order; bool acyclic; TopOrderVisitor<Arc> top_order_visitor(&order, &acyclic); DfsVisit(*fst, &top_order_visitor, EpsilonArcFilter<Arc>()); // Sanity check: should be acyclic if property bit is set. if (!acyclic) { FSTERROR() << "RmEpsilon: Inconsistent acyclic property bit"; fst->SetProperties(kError, kError); return; } states.resize(order.size()); for (StateId i = 0; i < order.size(); i++) states[order[i]] = i; } else { uint64 props; std::vector<StateId> scc; SccVisitor<Arc> scc_visitor(&scc, nullptr, nullptr, &props); DfsVisit(*fst, &scc_visitor, EpsilonArcFilter<Arc>()); std::vector<StateId> first(scc.size(), kNoStateId); std::vector<StateId> next(scc.size(), kNoStateId); for (StateId i = 0; i < scc.size(); i++) { if (first[scc[i]] != kNoStateId) next[i] = first[scc[i]]; first[scc[i]] = i; } for (StateId i = 0; i < first.size(); i++) { for (auto j = first[i]; j != kNoStateId; j = next[j]) { states.push_back(j); } } } internal::RmEpsilonState<Arc, Queue> rmeps_state(*fst, distance, opts); while (!states.empty()) { const auto state = states.back(); states.pop_back(); if (!noneps_in[state] && (opts.connect || opts.weight_threshold != Weight::Zero() || opts.state_threshold != kNoStateId)) { continue; } rmeps_state.Expand(state); fst->SetFinal(state, rmeps_state.Final()); fst->DeleteArcs(state); auto &arcs = rmeps_state.Arcs(); fst->ReserveArcs(state, arcs.size()); while (!arcs.empty()) { fst->AddArc(state, arcs.back()); arcs.pop_back(); } } if (opts.connect || opts.weight_threshold != Weight::Zero() || opts.state_threshold != kNoStateId) { for (size_t s = 0; s < fst->NumStates(); ++s) { if (!noneps_in[s]) fst->DeleteArcs(s); } } if (rmeps_state.Error()) fst->SetProperties(kError, kError); fst->SetProperties( RmEpsilonProperties(fst->Properties(kFstProperties, false)), kFstProperties); if (opts.weight_threshold != Weight::Zero() || opts.state_threshold != kNoStateId) { Prune(fst, opts.weight_threshold, opts.state_threshold); } if (opts.connect && opts.weight_threshold == Weight::Zero() && opts.state_threshold == kNoStateId) { Connect(fst); } } // Removes epsilon-transitions (when both the input and output label // are an epsilon) from a transducer. The result will be an equivalent // FST that has no such epsilon transitions. This version modifies its // input. It has a simplified interface; see above for a version that // allows finer control. // // Complexity: // // - Time: // // Unweighted: O(v^2 + ve). // Acyclic: O(v^2 + V e). // Tropical semiring: O(v^2 log V + ve). // General: exponential. // // - Space: O(vE) // // where v is the number of states visited and e is the number of arcs visited. // // For more information, see: // // Mohri, M. 2002. Generic epsilon-removal and input epsilon-normalization // algorithms for weighted transducers. International Journal of Computer // Science 13(1): 129-143. template <class Arc> void RmEpsilon(MutableFst<Arc> *fst, bool connect = true, typename Arc::Weight weight_threshold = Arc::Weight::Zero(), typename Arc::StateId state_threshold = kNoStateId, float delta = kShortestDelta) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; std::vector<Weight> distance; AutoQueue<StateId> state_queue(*fst, &distance, EpsilonArcFilter<Arc>()); RmEpsilonOptions<Arc, AutoQueue<StateId>> opts( &state_queue, delta, connect, weight_threshold, state_threshold); RmEpsilon(fst, &distance, opts); } struct RmEpsilonFstOptions : CacheOptions { float delta; explicit RmEpsilonFstOptions(const CacheOptions &opts, float delta = kShortestDelta) : CacheOptions(opts), delta(delta) {} explicit RmEpsilonFstOptions(float delta = kShortestDelta) : delta(delta) {} }; namespace internal { // Implementation of delayed RmEpsilonFst. template <class Arc> class RmEpsilonFstImpl : public CacheImpl<Arc> { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using Store = DefaultCacheStore<Arc>; using State = typename Store::State; using FstImpl<Arc>::Properties; using FstImpl<Arc>::SetType; using FstImpl<Arc>::SetProperties; using FstImpl<Arc>::SetInputSymbols; using FstImpl<Arc>::SetOutputSymbols; using CacheBaseImpl<CacheState<Arc>>::HasArcs; using CacheBaseImpl<CacheState<Arc>>::HasFinal; using CacheBaseImpl<CacheState<Arc>>::HasStart; using CacheBaseImpl<CacheState<Arc>>::PushArc; using CacheBaseImpl<CacheState<Arc>>::SetArcs; using CacheBaseImpl<CacheState<Arc>>::SetFinal; using CacheBaseImpl<CacheState<Arc>>::SetStart; RmEpsilonFstImpl(const Fst<Arc> &fst, const RmEpsilonFstOptions &opts) : CacheImpl<Arc>(opts), fst_(fst.Copy()), delta_(opts.delta), rmeps_state_( *fst_, &distance_, RmEpsilonOptions<Arc, FifoQueue<StateId>>(&queue_, delta_, false)) { SetType("rmepsilon"); SetProperties( RmEpsilonProperties(fst.Properties(kFstProperties, false), true), kCopyProperties); SetInputSymbols(fst.InputSymbols()); SetOutputSymbols(fst.OutputSymbols()); } RmEpsilonFstImpl(const RmEpsilonFstImpl &impl) : CacheImpl<Arc>(impl), fst_(impl.fst_->Copy(true)), delta_(impl.delta_), rmeps_state_( *fst_, &distance_, RmEpsilonOptions<Arc, FifoQueue<StateId>>(&queue_, delta_, false)) { SetType("rmepsilon"); SetProperties(impl.Properties(), kCopyProperties); SetInputSymbols(impl.InputSymbols()); SetOutputSymbols(impl.OutputSymbols()); } StateId Start() { if (!HasStart()) SetStart(fst_->Start()); return CacheImpl<Arc>::Start(); } Weight Final(StateId s) { if (!HasFinal(s)) Expand(s); return CacheImpl<Arc>::Final(s); } size_t NumArcs(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl<Arc>::NumArcs(s); } size_t NumInputEpsilons(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl<Arc>::NumInputEpsilons(s); } size_t NumOutputEpsilons(StateId s) { if (!HasArcs(s)) Expand(s); return CacheImpl<Arc>::NumOutputEpsilons(s); } uint64 Properties() const override { return Properties(kFstProperties); } // Sets error if found and returns other FST impl properties. uint64 Properties(uint64 mask) const override { if ((mask & kError) && (fst_->Properties(kError, false) || rmeps_state_.Error())) { SetProperties(kError, kError); } return FstImpl<Arc>::Properties(mask); } void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) { if (!HasArcs(s)) Expand(s); CacheImpl<Arc>::InitArcIterator(s, data); } void Expand(StateId s) { rmeps_state_.Expand(s); SetFinal(s, rmeps_state_.Final()); auto &arcs = rmeps_state_.Arcs(); while (!arcs.empty()) { PushArc(s, arcs.back()); arcs.pop_back(); } SetArcs(s); } private: std::unique_ptr<const Fst<Arc>> fst_; float delta_; std::vector<Weight> distance_; FifoQueue<StateId> queue_; internal::RmEpsilonState<Arc, FifoQueue<StateId>> rmeps_state_; }; } // namespace internal // Removes epsilon-transitions (when both the input and output label are an // epsilon) from a transducer. The result will be an equivalent FST that has no // such epsilon transitions. This version is a // delayed FST. // // Complexity: // // - Time: // Unweighted: O(v^2 + ve). // General: exponential. // // - Space: O(vE) // // where v is the number of states visited and e is the number of arcs visited. // Constant time to visit an input state or arc is assumed and exclusive of // caching. // // For more information, see: // // Mohri, M. 2002. Generic epsilon-removal and input epsilon-normalization // algorithms for weighted transducers. International Journal of Computer // Science 13(1): 129-143. // // This class attaches interface to implementation and handles // reference counting, delegating most methods to ImplToFst. template <class A> class RmEpsilonFst : public ImplToFst<internal::RmEpsilonFstImpl<A>> { public: using Arc = A; using StateId = typename Arc::StateId; using Store = DefaultCacheStore<Arc>; using State = typename Store::State; using Impl = internal::RmEpsilonFstImpl<Arc>; friend class ArcIterator<RmEpsilonFst<Arc>>; friend class StateIterator<RmEpsilonFst<Arc>>; explicit RmEpsilonFst(const Fst<Arc> &fst) : ImplToFst<Impl>(std::make_shared<Impl>(fst, RmEpsilonFstOptions())) {} RmEpsilonFst(const Fst<A> &fst, const RmEpsilonFstOptions &opts) : ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {} // See Fst<>::Copy() for doc. RmEpsilonFst(const RmEpsilonFst<Arc> &fst, bool safe = false) : ImplToFst<Impl>(fst, safe) {} // Get a copy of this RmEpsilonFst. See Fst<>::Copy() for further doc. RmEpsilonFst<Arc> *Copy(bool safe = false) const override { return new RmEpsilonFst<Arc>(*this, safe); } inline void InitStateIterator(StateIteratorData<Arc> *data) const override; void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override { GetMutableImpl()->InitArcIterator(s, data); } private: using ImplToFst<Impl>::GetImpl; using ImplToFst<Impl>::GetMutableImpl; RmEpsilonFst &operator=(const RmEpsilonFst &) = delete; }; // Specialization for RmEpsilonFst. template <class Arc> class StateIterator<RmEpsilonFst<Arc>> : public CacheStateIterator<RmEpsilonFst<Arc>> { public: explicit StateIterator(const RmEpsilonFst<Arc> &fst) : CacheStateIterator<RmEpsilonFst<Arc>>(fst, fst.GetMutableImpl()) {} }; // Specialization for RmEpsilonFst. template <class Arc> class ArcIterator<RmEpsilonFst<Arc>> : public CacheArcIterator<RmEpsilonFst<Arc>> { public: using StateId = typename Arc::StateId; ArcIterator(const RmEpsilonFst<Arc> &fst, StateId s) : CacheArcIterator<RmEpsilonFst<Arc>>(fst.GetMutableImpl(), s) { if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s); } }; template <class Arc> inline void RmEpsilonFst<Arc>::InitStateIterator( StateIteratorData<Arc> *data) const { data->base = new StateIterator<RmEpsilonFst<Arc>>(*this); } // Useful alias when using StdArc. using StdRmEpsilonFst = RmEpsilonFst<StdArc>; } // namespace fst #endif // FST_RMEPSILON_H_ |