rmepsilon.h
17.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes that implemement epsilon-removal.
#ifndef FST_RMEPSILON_H_
#define FST_RMEPSILON_H_
#include <forward_list>
#include <stack>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arcfilter.h>
#include <fst/cache.h>
#include <fst/connect.h>
#include <fst/factor-weight.h>
#include <fst/invert.h>
#include <fst/prune.h>
#include <fst/queue.h>
#include <fst/shortest-distance.h>
#include <fst/topsort.h>
namespace fst {
template <class Arc, class Queue>
class RmEpsilonOptions
: public ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc>> {
public:
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
bool connect; // Connect output
Weight weight_threshold; // Pruning weight threshold.
StateId state_threshold; // Pruning state threshold.
explicit RmEpsilonOptions(Queue *queue, float delta = kShortestDelta,
bool connect = true,
Weight weight_threshold = Weight::Zero(),
StateId state_threshold = kNoStateId)
: ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc>>(
queue, EpsilonArcFilter<Arc>(), kNoStateId, delta),
connect(connect),
weight_threshold(std::move(weight_threshold)),
state_threshold(state_threshold) {}
};
namespace internal {
// Computation state of the epsilon-removal algorithm.
template <class Arc, class Queue>
class RmEpsilonState {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
RmEpsilonState(const Fst<Arc> &fst, std::vector<Weight> *distance,
const RmEpsilonOptions<Arc, Queue> &opts)
: fst_(fst),
distance_(distance),
sd_state_(fst_, distance, opts, true),
expand_id_(0) {}
void Expand(StateId s);
std::vector<Arc> &Arcs() { return arcs_; }
const Weight &Final() const { return final_; }
bool Error() const { return sd_state_.Error(); }
private:
struct Element {
Label ilabel;
Label olabel;
StateId nextstate;
Element() {}
Element(Label ilabel, Label olabel, StateId nexstate)
: ilabel(ilabel), olabel(olabel), nextstate(nexstate) {}
};
struct ElementHash {
public:
size_t operator()(const Element &element) const {
static constexpr size_t prime0 = 7853;
static constexpr size_t prime1 = 7867;
return static_cast<size_t>(element.nextstate) +
static_cast<size_t>(element.ilabel) * prime0 +
static_cast<size_t>(element.olabel) * prime1;
}
};
class ElementEqual {
public:
bool operator()(const Element &e1, const Element &e2) const {
return (e1.ilabel == e2.ilabel) && (e1.olabel == e2.olabel) &&
(e1.nextstate == e2.nextstate);
}
};
using ElementMap = std::unordered_map<Element, std::pair<StateId, size_t>,
ElementHash, ElementEqual>;
const Fst<Arc> &fst_;
// Distance from state being expanded in epsilon-closure.
std::vector<Weight> *distance_;
// Shortest distance algorithm computation state.
internal::ShortestDistanceState<Arc, Queue, EpsilonArcFilter<Arc>> sd_state_;
// Maps an element to a pair corresponding to a position in the arcs vector
// of the state being expanded. The element corresopnds to the position in
// the arcs_ vector if p.first is equal to the state being expanded.
ElementMap element_map_;
EpsilonArcFilter<Arc> eps_filter_;
std::stack<StateId> eps_queue_; // Queue used to visit the epsilon-closure.
std::vector<bool> visited_; // True if the state has been visited.
std::forward_list<StateId> visited_states_; // List of visited states.
std::vector<Arc> arcs_; // Arcs of state being expanded.
Weight final_; // Final weight of state being expanded.
StateId expand_id_; // Unique ID for each call to Expand
RmEpsilonState(const RmEpsilonState &) = delete;
RmEpsilonState &operator=(const RmEpsilonState &) = delete;
};
template <class Arc, class Queue>
void RmEpsilonState<Arc, Queue>::Expand(typename Arc::StateId source) {
final_ = Weight::Zero();
arcs_.clear();
sd_state_.ShortestDistance(source);
if (sd_state_.Error()) return;
eps_queue_.push(source);
while (!eps_queue_.empty()) {
const auto state = eps_queue_.top();
eps_queue_.pop();
while (visited_.size() <= state) visited_.push_back(false);
if (visited_[state]) continue;
visited_[state] = true;
visited_states_.push_front(state);
for (ArcIterator<Fst<Arc>> aiter(fst_, state); !aiter.Done();
aiter.Next()) {
auto arc = aiter.Value();
arc.weight = Times((*distance_)[state], arc.weight);
if (eps_filter_(arc)) {
while (visited_.size() <= arc.nextstate) visited_.push_back(false);
if (!visited_[arc.nextstate]) eps_queue_.push(arc.nextstate);
} else {
const Element element(arc.ilabel, arc.olabel, arc.nextstate);
auto insert_result = element_map_.insert(
std::make_pair(element, std::make_pair(expand_id_, arcs_.size())));
if (insert_result.second) {
arcs_.push_back(arc);
} else {
if (insert_result.first->second.first == expand_id_) {
auto &weight = arcs_[insert_result.first->second.second].weight;
weight = Plus(weight, arc.weight);
} else {
insert_result.first->second.first = expand_id_;
insert_result.first->second.second = arcs_.size();
arcs_.push_back(arc);
}
}
}
}
final_ = Plus(final_, Times((*distance_)[state], fst_.Final(state)));
}
while (!visited_states_.empty()) {
visited_[visited_states_.front()] = false;
visited_states_.pop_front();
}
++expand_id_;
}
} // namespace internal
// Removes epsilon-transitions (when both the input and output label are an
// epsilon) from a transducer. The result will be an equivalent FST that has no
// such epsilon transitions. This version modifies its input. It allows fine
// control via the options argument; see below for a simpler interface.
//
// The distance vector will be used to hold the shortest distances during the
// epsilon-closure computation. The state queue discipline and convergence delta
// are taken in the options argument.
template <class Arc, class Queue>
void RmEpsilon(MutableFst<Arc> *fst,
std::vector<typename Arc::Weight> *distance,
const RmEpsilonOptions<Arc, Queue> &opts) {
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
if (fst->Start() == kNoStateId) return;
// noneps_in[s] will be set to true iff s admits a non-epsilon incoming
// transition or is the start state.
std::vector<bool> noneps_in(fst->NumStates(), false);
noneps_in[fst->Start()] = true;
for (size_t i = 0; i < fst->NumStates(); ++i) {
for (ArcIterator<Fst<Arc>> aiter(*fst, i); !aiter.Done(); aiter.Next()) {
const auto &arc = aiter.Value();
if (arc.ilabel != 0 || arc.olabel != 0) {
noneps_in[arc.nextstate] = true;
}
}
}
// States sorted in topological order when (acyclic) or generic topological
// order (cyclic).
std::vector<StateId> states;
states.reserve(fst->NumStates());
if (fst->Properties(kTopSorted, false) & kTopSorted) {
for (size_t i = 0; i < fst->NumStates(); i++) states.push_back(i);
} else if (fst->Properties(kAcyclic, false) & kAcyclic) {
std::vector<StateId> order;
bool acyclic;
TopOrderVisitor<Arc> top_order_visitor(&order, &acyclic);
DfsVisit(*fst, &top_order_visitor, EpsilonArcFilter<Arc>());
// Sanity check: should be acyclic if property bit is set.
if (!acyclic) {
FSTERROR() << "RmEpsilon: Inconsistent acyclic property bit";
fst->SetProperties(kError, kError);
return;
}
states.resize(order.size());
for (StateId i = 0; i < order.size(); i++) states[order[i]] = i;
} else {
uint64 props;
std::vector<StateId> scc;
SccVisitor<Arc> scc_visitor(&scc, nullptr, nullptr, &props);
DfsVisit(*fst, &scc_visitor, EpsilonArcFilter<Arc>());
std::vector<StateId> first(scc.size(), kNoStateId);
std::vector<StateId> next(scc.size(), kNoStateId);
for (StateId i = 0; i < scc.size(); i++) {
if (first[scc[i]] != kNoStateId) next[i] = first[scc[i]];
first[scc[i]] = i;
}
for (StateId i = 0; i < first.size(); i++) {
for (auto j = first[i]; j != kNoStateId; j = next[j]) {
states.push_back(j);
}
}
}
internal::RmEpsilonState<Arc, Queue> rmeps_state(*fst, distance, opts);
while (!states.empty()) {
const auto state = states.back();
states.pop_back();
if (!noneps_in[state] &&
(opts.connect || opts.weight_threshold != Weight::Zero() ||
opts.state_threshold != kNoStateId)) {
continue;
}
rmeps_state.Expand(state);
fst->SetFinal(state, rmeps_state.Final());
fst->DeleteArcs(state);
auto &arcs = rmeps_state.Arcs();
fst->ReserveArcs(state, arcs.size());
while (!arcs.empty()) {
fst->AddArc(state, arcs.back());
arcs.pop_back();
}
}
if (opts.connect || opts.weight_threshold != Weight::Zero() ||
opts.state_threshold != kNoStateId) {
for (size_t s = 0; s < fst->NumStates(); ++s) {
if (!noneps_in[s]) fst->DeleteArcs(s);
}
}
if (rmeps_state.Error()) fst->SetProperties(kError, kError);
fst->SetProperties(
RmEpsilonProperties(fst->Properties(kFstProperties, false)),
kFstProperties);
if (opts.weight_threshold != Weight::Zero() ||
opts.state_threshold != kNoStateId) {
Prune(fst, opts.weight_threshold, opts.state_threshold);
}
if (opts.connect && opts.weight_threshold == Weight::Zero() &&
opts.state_threshold == kNoStateId) {
Connect(fst);
}
}
// Removes epsilon-transitions (when both the input and output label
// are an epsilon) from a transducer. The result will be an equivalent
// FST that has no such epsilon transitions. This version modifies its
// input. It has a simplified interface; see above for a version that
// allows finer control.
//
// Complexity:
//
// - Time:
//
// Unweighted: O(v^2 + ve).
// Acyclic: O(v^2 + V e).
// Tropical semiring: O(v^2 log V + ve).
// General: exponential.
//
// - Space: O(vE)
//
// where v is the number of states visited and e is the number of arcs visited.
//
// For more information, see:
//
// Mohri, M. 2002. Generic epsilon-removal and input epsilon-normalization
// algorithms for weighted transducers. International Journal of Computer
// Science 13(1): 129-143.
template <class Arc>
void RmEpsilon(MutableFst<Arc> *fst, bool connect = true,
typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
typename Arc::StateId state_threshold = kNoStateId,
float delta = kShortestDelta) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
std::vector<Weight> distance;
AutoQueue<StateId> state_queue(*fst, &distance, EpsilonArcFilter<Arc>());
RmEpsilonOptions<Arc, AutoQueue<StateId>> opts(
&state_queue, delta, connect, weight_threshold, state_threshold);
RmEpsilon(fst, &distance, opts);
}
struct RmEpsilonFstOptions : CacheOptions {
float delta;
explicit RmEpsilonFstOptions(const CacheOptions &opts,
float delta = kShortestDelta)
: CacheOptions(opts), delta(delta) {}
explicit RmEpsilonFstOptions(float delta = kShortestDelta) : delta(delta) {}
};
namespace internal {
// Implementation of delayed RmEpsilonFst.
template <class Arc>
class RmEpsilonFstImpl : public CacheImpl<Arc> {
public:
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Store = DefaultCacheStore<Arc>;
using State = typename Store::State;
using FstImpl<Arc>::Properties;
using FstImpl<Arc>::SetType;
using FstImpl<Arc>::SetProperties;
using FstImpl<Arc>::SetInputSymbols;
using FstImpl<Arc>::SetOutputSymbols;
using CacheBaseImpl<CacheState<Arc>>::HasArcs;
using CacheBaseImpl<CacheState<Arc>>::HasFinal;
using CacheBaseImpl<CacheState<Arc>>::HasStart;
using CacheBaseImpl<CacheState<Arc>>::PushArc;
using CacheBaseImpl<CacheState<Arc>>::SetArcs;
using CacheBaseImpl<CacheState<Arc>>::SetFinal;
using CacheBaseImpl<CacheState<Arc>>::SetStart;
RmEpsilonFstImpl(const Fst<Arc> &fst, const RmEpsilonFstOptions &opts)
: CacheImpl<Arc>(opts),
fst_(fst.Copy()),
delta_(opts.delta),
rmeps_state_(
*fst_, &distance_,
RmEpsilonOptions<Arc, FifoQueue<StateId>>(&queue_, delta_, false)) {
SetType("rmepsilon");
SetProperties(
RmEpsilonProperties(fst.Properties(kFstProperties, false), true),
kCopyProperties);
SetInputSymbols(fst.InputSymbols());
SetOutputSymbols(fst.OutputSymbols());
}
RmEpsilonFstImpl(const RmEpsilonFstImpl &impl)
: CacheImpl<Arc>(impl),
fst_(impl.fst_->Copy(true)),
delta_(impl.delta_),
rmeps_state_(
*fst_, &distance_,
RmEpsilonOptions<Arc, FifoQueue<StateId>>(&queue_, delta_, false)) {
SetType("rmepsilon");
SetProperties(impl.Properties(), kCopyProperties);
SetInputSymbols(impl.InputSymbols());
SetOutputSymbols(impl.OutputSymbols());
}
StateId Start() {
if (!HasStart()) SetStart(fst_->Start());
return CacheImpl<Arc>::Start();
}
Weight Final(StateId s) {
if (!HasFinal(s)) Expand(s);
return CacheImpl<Arc>::Final(s);
}
size_t NumArcs(StateId s) {
if (!HasArcs(s)) Expand(s);
return CacheImpl<Arc>::NumArcs(s);
}
size_t NumInputEpsilons(StateId s) {
if (!HasArcs(s)) Expand(s);
return CacheImpl<Arc>::NumInputEpsilons(s);
}
size_t NumOutputEpsilons(StateId s) {
if (!HasArcs(s)) Expand(s);
return CacheImpl<Arc>::NumOutputEpsilons(s);
}
uint64 Properties() const override { return Properties(kFstProperties); }
// Sets error if found and returns other FST impl properties.
uint64 Properties(uint64 mask) const override {
if ((mask & kError) &&
(fst_->Properties(kError, false) || rmeps_state_.Error())) {
SetProperties(kError, kError);
}
return FstImpl<Arc>::Properties(mask);
}
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
if (!HasArcs(s)) Expand(s);
CacheImpl<Arc>::InitArcIterator(s, data);
}
void Expand(StateId s) {
rmeps_state_.Expand(s);
SetFinal(s, rmeps_state_.Final());
auto &arcs = rmeps_state_.Arcs();
while (!arcs.empty()) {
PushArc(s, arcs.back());
arcs.pop_back();
}
SetArcs(s);
}
private:
std::unique_ptr<const Fst<Arc>> fst_;
float delta_;
std::vector<Weight> distance_;
FifoQueue<StateId> queue_;
internal::RmEpsilonState<Arc, FifoQueue<StateId>> rmeps_state_;
};
} // namespace internal
// Removes epsilon-transitions (when both the input and output label are an
// epsilon) from a transducer. The result will be an equivalent FST that has no
// such epsilon transitions. This version is a
// delayed FST.
//
// Complexity:
//
// - Time:
// Unweighted: O(v^2 + ve).
// General: exponential.
//
// - Space: O(vE)
//
// where v is the number of states visited and e is the number of arcs visited.
// Constant time to visit an input state or arc is assumed and exclusive of
// caching.
//
// For more information, see:
//
// Mohri, M. 2002. Generic epsilon-removal and input epsilon-normalization
// algorithms for weighted transducers. International Journal of Computer
// Science 13(1): 129-143.
//
// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A>
class RmEpsilonFst : public ImplToFst<internal::RmEpsilonFstImpl<A>> {
public:
using Arc = A;
using StateId = typename Arc::StateId;
using Store = DefaultCacheStore<Arc>;
using State = typename Store::State;
using Impl = internal::RmEpsilonFstImpl<Arc>;
friend class ArcIterator<RmEpsilonFst<Arc>>;
friend class StateIterator<RmEpsilonFst<Arc>>;
explicit RmEpsilonFst(const Fst<Arc> &fst)
: ImplToFst<Impl>(std::make_shared<Impl>(fst, RmEpsilonFstOptions())) {}
RmEpsilonFst(const Fst<A> &fst, const RmEpsilonFstOptions &opts)
: ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {}
// See Fst<>::Copy() for doc.
RmEpsilonFst(const RmEpsilonFst<Arc> &fst, bool safe = false)
: ImplToFst<Impl>(fst, safe) {}
// Get a copy of this RmEpsilonFst. See Fst<>::Copy() for further doc.
RmEpsilonFst<Arc> *Copy(bool safe = false) const override {
return new RmEpsilonFst<Arc>(*this, safe);
}
inline void InitStateIterator(StateIteratorData<Arc> *data) const override;
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
GetMutableImpl()->InitArcIterator(s, data);
}
private:
using ImplToFst<Impl>::GetImpl;
using ImplToFst<Impl>::GetMutableImpl;
RmEpsilonFst &operator=(const RmEpsilonFst &) = delete;
};
// Specialization for RmEpsilonFst.
template <class Arc>
class StateIterator<RmEpsilonFst<Arc>>
: public CacheStateIterator<RmEpsilonFst<Arc>> {
public:
explicit StateIterator(const RmEpsilonFst<Arc> &fst)
: CacheStateIterator<RmEpsilonFst<Arc>>(fst, fst.GetMutableImpl()) {}
};
// Specialization for RmEpsilonFst.
template <class Arc>
class ArcIterator<RmEpsilonFst<Arc>>
: public CacheArcIterator<RmEpsilonFst<Arc>> {
public:
using StateId = typename Arc::StateId;
ArcIterator(const RmEpsilonFst<Arc> &fst, StateId s)
: CacheArcIterator<RmEpsilonFst<Arc>>(fst.GetMutableImpl(), s) {
if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
}
};
template <class Arc>
inline void RmEpsilonFst<Arc>::InitStateIterator(
StateIteratorData<Arc> *data) const {
data->base = new StateIterator<RmEpsilonFst<Arc>>(*this);
}
// Useful alias when using StdArc.
using StdRmEpsilonFst = RmEpsilonFst<StdArc>;
} // namespace fst
#endif // FST_RMEPSILON_H_