Blame view
tools/sctk-2.4.10/src/sclite/det.c
19.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
#include "sctk.h" static void Compute_ROC (double *true_scores, int num_true, double *false_scores, int num_false, double **Pdet); static double ppndf (double p); /* return true if all the paths in the score structure have hyp confidences */ int hyp_confidences_available(SCORES *scor){ int g, p; int noconf = 0; /* search the score for pabiuld the target and non-target arrays */ for (g=0; g<scor->num_grp; g++) for (p=0; p<scor->grp[g].num_path; p++) if (! BF_isSET(scor->grp[g].path[p]->attrib,PA_HYP_CONF)) noconf ++; return(noconf == 0 ? 1 : 0); } int make_SCORES_DET_curve(SCORES *scor[], int nscor, char *outroot, int feedback, char *test_name){ double *targ=(double *)0, *non_targ=(double *)0, **det = (double **)0; int n_targ = 0 , n_non_targ = 0; int max_targ = 10000, max_non_targ = 10000; int g, p, w, s; GRP *gp; PATH *pp; FILE *fp, *fpd; int rtn; char *gnutics = "(\"0.1\" -3.08, \"0.5\" -2.57, \"2\" -2.05, \"5\" -1.64, " "\"10\" -1.28, \"20\" -0.84, \"30\" -0.52, \"40\" -0.25, " "\"50\" 0.0, \"60\" 0.25, \"70\" 0.52, \"80\" 0.84, \"90\" 1.28, " "\"95\" 1.64, \"98\" 2.05, \"99.5\" 2.57, \"99.9\" 3.08)"; if (feedback >= 1) if (hyp_confidences_available(scor[0])) printf(" Writing DET Curve to '%s.det.[plt,dat]' ",outroot); else { printf(" Skipping DET Curve, no confidence scores supplied. "); return 0; } /* output the DET Curve GNUPLUT command file */ if ((fpd = fopen(rsprintf("%s.det.plt",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Unable to open DET Curve GNUPLOT file '%s' for" " writing.",rsprintf("%s.det.plt",outroot)); goto ERROR; } fprintf(fpd,"## GNUPLOT command file "); fprintf(fpd,"set data style lines "); fprintf(fpd,"set size 0.78, 1.0 "); fprintf(fpd,"set noxtics "); fprintf(fpd,"set noytics "); if (nscor == 1){ fprintf(fpd,"set title 'DET plot for %s' ",outroot); fprintf(fpd,"set nokey "); } else { if (*test_name != (char)0) fprintf(fpd,"set title 'DET plot for %s Test' ",test_name); else fprintf(fpd,"set title 'DET plot' "); } fprintf(fpd,"set ylabel \"Correct Words Removed (in %%)\" "); fprintf(fpd,"set xlabel \"Incorrect Words Retained (in %%)\" "); fprintf(fpd,"set grid "); fprintf(fpd,"set ytics %s ",gnutics); fprintf(fpd,"set xtics %s ",gnutics); fprintf(fpd,"plot [-3.290527:3.290527] [-3.290527:3.290527] \\ "); /* biuld the target and non-target arrays */ for (s=0; s<nscor; s++){ alloc_singZ(targ,max_targ,double,0.0); alloc_singZ(non_targ,max_non_targ,double,0.0); for (g=0; g<scor[s]->num_grp; g++){ gp = &(scor[s]->grp[g]); for (p=0; p<gp->num_path; p++) { pp = gp->path[p]; for (w=0; w<pp->num; w++) { if (pp->pset[w].eval == P_CORR && *(((WORD*)pp->pset[w].b_ptr)->value) != (TEXT)'\0'){ if (n_targ >= max_targ) expand_singarr(targ,n_targ,max_targ,2,double); targ[n_targ++] = ((WORD *)(pp->pset[w].b_ptr))->conf; } else if (pp->pset[w].eval == P_SUB || pp->pset[w].eval == P_INS){ if (n_non_targ >= max_non_targ) expand_singarr(non_targ,n_non_targ, max_non_targ,2,double); non_targ[n_non_targ++] = ((WORD *)(pp->pset[w].b_ptr))->conf; } } } } /* allocate the DET table */ alloc_2dimZ(det,(n_targ+n_non_targ),2,double,0.0); /* calculate the DET Curve */ Compute_ROC (targ, n_targ, non_targ, n_non_targ, det); /* output the DET Curve data points */ if ((fp = fopen(rsprintf("%s.det.dat.%02d",outroot,s),"w"))== (FILE *)0){ fprintf(stderr,"Error: Unable to open DET Curve data file '%s' for" " writing.",rsprintf("%s.det.dat.%02d",outroot,s)); goto ERROR; } for (w=0; w<n_targ+n_non_targ-1; w++) fprintf(fp,"%f %f ",det[w][0],det[w][1]); fclose(fp); /**************/ fprintf(fpd," \"%s.det.dat.%02d\" using 2:1 title \"%s\" with lines %d", outroot,s,scor[s]->title,s+1); if (s < nscor-1) fprintf(fpd,", \\"); fprintf(fpd," "); if (det != (double**)0) free_2dimarr(det,(n_targ+n_non_targ),double); if (targ != (double *)0) free_singarr(targ,double); if (non_targ != (double *)0) free_singarr(non_targ,double); } fprintf(fpd,"set ytics "); fprintf(fpd,"set xtics "); fprintf(fpd,"set size 1.0, 1.0 "); fprintf(fpd,"set key "); fclose(fpd); rtn = 0; goto END; ERROR: rtn = 1; END: if (targ != (double *)0) free_singarr(targ,double); if (non_targ != (double *)0) free_singarr(non_targ,double); if (det != (double**)0) free_2dimarr(det,(n_targ+n_non_targ),double); return(rtn); } /* The Compute_ROC function that I sent to you has a slight error -- it wasn't computing the last point on the Pmiss/Pfa probability trade-off curve. This is corrected in the version below. Also, we've been thinking about what to call these plots that makes better intuitive sense. I've sort of decided on "DET" or DErT" curves, which stands for "Detection Error Trade-off" curves. This really does express what we are plotting, namely the Trade-off between the two kinds of Errors (Pmiss/Pfa) for Detection tasks. :::::::::::::: Compute_ROC.m -- corrected :::::::::::::: function Pdet = Compute_ROC (true_scores, false_scores) %function Pdet = Compute_ROC (true_scores, false_scores) % % Compute_ROC computes the miss/false_alarm probability trade-off % for a set of scores for the true/false detection hypothesis. % % true_scores (false_scores) are detection output scores for a set of % detection trials, given that the target hypothesis is true (false). % (It is assumed by convention that the more positive the score, the % more likely is the target hypothesis.) % % Pdet is a two-column matrix containing the detection probability % trade-off. The first column contains the miss probabilities and % the second column contains the corresponding false alarm % probabilities. % % See also Make_pROC, Plot_pROC, and Set_DCF. */ #define PMIN 0.0005 #define PMAX 0.5 #define SMAX 9E99 #define Cmiss 1.0 #define Cfa 1.0 #define Ptrue 0.05 #define Pfalse 0.05 static void Compute_ROC (double *true_scores, int num_true, double *false_scores, int num_false, double **Pdet){ int ntrue; int nfalse; int npts; qsort ((char *) true_scores, num_true, sizeof (double), qsort_double_compare); true_scores[num_true] = SMAX; qsort ((char *) false_scores, num_false, sizeof (double), qsort_double_compare); false_scores[num_false] = SMAX; ntrue = 1; nfalse = 1; npts = 0; Pdet[npts][0] = ppndf (PMIN); Pdet[npts][1] = ppndf (PMAX); while ((ntrue < num_true) || (nfalse < num_false)) { /* printf ("ntrue = %d, nfalse = %d, npts = %d, trsc = %lf, fasc =%lf ", ntrue, nfalse, npts, true_scores[ntrue], false_scores[nfalse]); */ /* bug fix JGF, the previous expression assumed an highest score would ALLWAYS be a TRUE score */ if ((true_scores[ntrue] <= false_scores[nfalse]) && (ntrue < num_true)) ntrue = ntrue+1; else nfalse = nfalse+1; /* end */ npts = npts+1; Pdet[npts][0] = ((double) (ntrue-1) / (double) num_true); Pdet[npts][1] = ((double) (num_false - (nfalse-1)) / (double) num_false); Pdet[npts][0] = ppndf (Pdet[npts][0]); Pdet[npts][1] = ppndf (Pdet[npts][1]); /* printf ("point %f %f ", Pdet[npts][0], Pdet[npts][1]); */ } } /* Convert lines with ROC coordinates to normal deviate scale. Ignore lines beginning with "#" (9/26/94) */ #ifndef abs #define abs(x) (x < 0 ? -x : x) #endif #define SPLIT 0.42 #define A0 2.5066282388 #define A1 -18.6150006252 #define A2 41.3911977353 #define A3 -25.4410604963 #define B1 -8.4735109309 #define B2 23.0833674374 #define B3 -21.0622410182 #define B4 3.1308290983 #define C0 -2.7871893113 #define C1 -2.2979647913 #define C2 4.8501412713 #define C3 2.3212127685 #define D1 3.5438892476 #define D2 1.6370678189 #define LL 140 #define eps 2.2204e-16 static double ppndf (double p){ double q; double r; double retval; /* printf ("p = %f ", p); */ if (p >= 1.0) p = 1 - eps; if (p <= 0.0) p = eps; q = p - 0.5; if (abs(q) <= SPLIT){ r = q * q; retval = q * (((A3 * r + A2) * r + A1) * r + A0) / ((((B4 * r + B3) * r + B2) * r + B1) * r + 1.0); } else { r = (q > 0.0 ? 1.0 - p : p); if (r <= 0.0){ fprintf (stderr,"Warning: Found r = %f ", r); return(0.0); } r = sqrt ((-1.0) * log (r)); retval = (((C3 * r + C2) * r + C1) * r + C0) / ((D2 * r + D1) * r + 1.0); if (q < 0) retval *= -1.0; } return (retval); } /**************************************************************************** * * The functions below create the binned confidence graphs * * * ****************************************************************************/ #define H_TO 0 #define H_FROM 1 #define H_PCT_CORR 2 #define H_EXP_PCT_CORR 3 #define H_N_CORR 4 #define H_N_INCORR 5 #define NUM_H_ELEM 6 static void binned_confidences(SCORES *scor, double from, double to, int nbin, double **hist); int make_confidence_histogram(SCORES *scor, char *outroot, int feedback){ double **hist = (double **)0; FILE *fp_dat1, *fp_plt; int rtn, b, nbin = 100; if (feedback >= 1) if (hyp_confidences_available(scor)) printf(" Writing Confidence Histogram '%s.hist.[plt,dat]' ", outroot); else { printf(" Skipping Confidence Histogram, no confidence scores supplied. "); return 0; } /* allocate memory */ alloc_2dimZ(hist,nbin,NUM_H_ELEM,double,0.0); binned_confidences(scor, 0.0, 1.0, nbin, hist); /* output the Binned histogram data points */ if ((fp_dat1 = fopen(rsprintf("%s.hist.dat",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Writing Binned Histogram file '%s' for" " writing.",rsprintf("%s.bhist.dat1",outroot)); goto ERROR; } for (b=0; b<nbin; b++){ fprintf(fp_dat1,"%f %f %f %f ",hist[b][H_FROM], hist[b][H_N_CORR]+hist[b][H_N_INCORR], hist[b][H_N_CORR],hist[b][H_N_INCORR]); fprintf(fp_dat1,"%f %f %f %f ",hist[b][H_TO], hist[b][H_N_CORR]+hist[b][H_N_INCORR], hist[b][H_N_CORR],hist[b][H_N_INCORR]); } fclose(fp_dat1); /* output the Binned histogram GNUPLUT command file */ if ((fp_plt = fopen(rsprintf("%s.hist.plt",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Unable to open Binned Histogram" "GNUPLOT file '%s' for writing.", rsprintf("%s.bhist.plt",outroot)); goto ERROR; } fprintf(fp_plt,"set samples 1000 "); fprintf(fp_plt,"set xrange [0.000000:1.000000] "); fprintf(fp_plt,"set autoscale y "); fprintf(fp_plt,"set size 0.78, 1.0 "); fprintf(fp_plt,"set nogrid "); fprintf(fp_plt,"set ylabel 'Counts' "); fprintf(fp_plt,"set xlabel 'Confidence Measure' "); fprintf(fp_plt,"set title 'Confidence scores for %s' ",outroot); fprintf(fp_plt, "plot '%s.hist.dat' using 1:2 '%%f%%f' title 'All Conf.'" " with lines, \\ " " '%s.hist.dat' using 1:2 '%%f%%*s%%f' title 'Correct Conf.'" " with lines, \\ " " '%s.hist.dat' using 1:2 '%%f%%*s%%*s%%f' title 'Incorrect" " Conf.' with lines ",outroot,outroot,outroot); fprintf(fp_plt,"set size 1.0, 1.0 "); fclose(fp_plt); rtn = 0; goto END; ERROR: rtn = 1; END: if (hist != (double**)0) free_2dimarr(hist,nbin,double); return(rtn); } int make_binned_confidence(SCORES *scor, char *outroot, int feedback){ double **hist = (double **)0; FILE *fp_dat1, *fp_plt; int rtn, b, nbin = 10; if (feedback >= 1) if (hyp_confidences_available(scor)) printf(" Writing Binned Histogram '%s.bhist.[plt,dat1]' ", outroot); else { printf(" Skipping Binned Histogram, no confidence scores supplied. "); return 0; } /* allocate memory */ alloc_2dimZ(hist,nbin,NUM_H_ELEM,double,0.0); binned_confidences(scor, 0.0, 1.0, nbin, hist); /* output the Binned histogram data points */ if ((fp_dat1 = fopen(rsprintf("%s.bhist.dat1",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Writing Binned Histogram file '%s' for" " writing.",rsprintf("%s.bhist.dat1",outroot)); goto ERROR; } for (b=0; b<nbin; b++){ fprintf(fp_dat1,"%.4f %f 1 1 0.1 ",(b*0.1) + 0.05,hist[b][H_PCT_CORR]); } fclose(fp_dat1); /* output the Binned histogram GNUPLUT command file */ if ((fp_plt = fopen(rsprintf("%s.bhist.plt",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Unable to open Binned Histogram" "GNUPLOT file '%s' for writing.", rsprintf("%s.bhist.plt",outroot)); goto ERROR; } fprintf(fp_plt,"## GNUPLOT command file "); fprintf(fp_plt,"set samples 1000 "); fprintf(fp_plt,"set key 30.000000,90.000000 "); fprintf(fp_plt,"set xrange [0:1] "); fprintf(fp_plt,"set yrange [0:100] "); fprintf(fp_plt,"set nogrid "); fprintf(fp_plt,"set ylabel '%% Hypothesis Correct' "); fprintf(fp_plt,"set xlabel 'Confidence Scores' "); fprintf(fp_plt,"set title 'Binned Confidence scores for %s' ",outroot); fprintf(fp_plt,"set size 0.78,1 "); fprintf(fp_plt,"set nolabel "); fprintf(fp_plt,"plot '%s.bhist.dat1' title 'True' with boxes,\\ ", outroot); fprintf(fp_plt," x*100 title 'Predicted' with lines "); fprintf(fp_plt,"set size 1.0, 1.0 "); fclose(fp_plt); rtn = 0; goto END; ERROR: rtn = 1; END: if (hist != (double**)0) free_2dimarr(hist,nbin,double); return(rtn); } int make_scaled_binned_confidence(SCORES *scor, char *outroot, int bins, int feedback){ int curlen = 1000, nword=0; int *eval, i, p, w, *sort, sum_corr = 0, sum_err = 0, rtn, b, l; double *conf; FILE *fp_dat, *fp_plt; if (feedback >= 1) if (hyp_confidences_available(scor)) printf(" Writing Scaled Binned Histogram '%s.sbhist.[plt,dat]' ", outroot); else{ printf(" Skipping Scaled Binned Histogram, no confidence scores supplied. "); return 0; } /* algo, : 1: make a list of all confidences, with either corr or incorr flags 2: sort the confidences 3: divide it up into N chunks to make the histogram */ /* step 1 */ alloc_singZ(conf,curlen,double,0.0); alloc_singZ(eval,curlen,int,0); for (i=0; i<scor->num_grp; i++) for (p=0; p<scor->grp[i].num_path; p++){ PATH *path = scor->grp[i].path[p]; for (w=0; w<path->num; w++) if ((path->pset[w].eval != P_DEL) && (*(((WORD*)path->pset[w].b_ptr)->value) != (TEXT)'\0')){ if (nword+1 == curlen){ expand_1dimZ(conf,nword,curlen,2,double,0.0,0); expand_1dimZ(eval,nword,curlen,2,int,0,1); } conf[nword] = ((WORD *)path->pset[w].b_ptr)->conf; eval[nword] = path->pset[w].eval; nword++; } } /* step 2 */ alloc_singZ(sort,curlen,int,0); sort_double_arr(conf, nword, sort, INCREASING); /* write the graph */ if ((fp_dat = fopen(rsprintf("%s.sbhist.dat",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Writing Scaled Binned Histogram file '%s' for" " writing.",rsprintf("%s.sbhist.dat",outroot)); goto ERROR; } for (b=nword / bins, l=0; l < b && l < nword; ){ double min, max; for (w=l, min=99999.0, max=(-99999.9), sum_err=sum_corr=0; w<b; w++){ if (eval[sort[w]] == P_CORR) sum_corr ++; else sum_err ++; if (min > conf[sort[w]]) min = conf[sort[w]]; if (max < conf[sort[w]]) max = conf[sort[w]]; } fprintf(fp_dat,"%f %f 1 1 %f ",(min+max)/2, (float)sum_corr/(sum_err+sum_corr)*100.0,(max-min)); l=b; b += nword/bins; /* on the last bin, add the leftover words, (from doing modulo arithmetic) to it */ if (b + (nword/bins) > nword) b = nword; } fclose(fp_dat); /* output the Scaled Binned histogram GNUPLUT command file */ if ((fp_plt = fopen(rsprintf("%s.sbhist.plt",outroot),"w")) == (FILE *)0){ fprintf(stderr,"Error: Unable to open Scaled Binned Histogram" "GNUPLOT file '%s' for writing.", rsprintf("%s.sbhist.plt",outroot)); goto ERROR; } fprintf(fp_plt,"## GNUPLOT command file "); fprintf(fp_plt,"set samples 1000 "); fprintf(fp_plt,"set key 30.000000,90.000000 "); fprintf(fp_plt,"set xrange [0:1] "); fprintf(fp_plt,"set yrange [0:100] "); fprintf(fp_plt,"set ylabel '%% Hypothesis Correct' "); fprintf(fp_plt,"set xlabel 'Confidence Scores' "); fprintf(fp_plt,"set title 'Scaled Binned Confidence scores for %s' ", outroot); fprintf(fp_plt,"set nogrid "); fprintf(fp_plt,"set size 0.78,1 "); fprintf(fp_plt,"set nolabel "); fprintf(fp_plt,"plot '%s.sbhist.dat' title 'True' with boxes, x*100 title 'Expected' ", outroot); fprintf(fp_plt,"set size 1.0, 1.0 "); fprintf(fp_plt,"set key "); fclose(fp_plt); rtn = 0; goto END; ERROR: rtn = 1; END: free_singarr(conf,double); free_singarr(eval,int); free_singarr(sort,int); return(rtn); } /* hist[x][H_PCT_CORR] is the percent correct in bin 'x' hist[x][H_EXP_PCT_CORR] is the expected correct in bin 'x' hist[x][H_N_CORR] is the number of corrent words in bin 'x' hist[x][H_N_INCORR] is the number of incorrect words in bin 'x' */ static void binned_confidences(SCORES *scor, double c_from, double c_to, int nbin, double **hist){ int i, p, w, b, index; double index_d; double range = c_to - c_from; int range_errors = 0; for (b=0; b<nbin; b++){ hist[b][H_FROM] = b * (range / (double)nbin); hist[b][H_TO] = (b + 1) * (range / (double)nbin); hist[b][H_N_CORR] = hist[b][H_N_INCORR] = 0; } for (i=0; i<scor->num_grp; i++){ for (p=0; p<scor->grp[i].num_path; p++){ PATH *path = scor->grp[i].path[p]; for (w=0; w<path->num; w++) { if ((path->pset[w].eval != P_DEL) && (*(((WORD*)path->pset[w].b_ptr)->value) != (TEXT)'\0')){ index_d = (((WORD *)path->pset[w].b_ptr)->conf - c_from) / range * (double)(nbin); index = (int)index_d; if (index_d <= (double)nbin && index == nbin) index = nbin - 1; if (index < 0 || index >= nbin){ range_errors ++; } else if (path->pset[w].eval == P_CORR) hist[index][H_N_CORR] ++; else hist[index][H_N_INCORR]++; } } } } if (range_errors > 0){ fprintf(stderr,"Warning: %d Confidence scores out of binning range %f:%f ", range_errors,c_from,c_to); } for (b=0; b<nbin; b++){ if ((hist[b][H_N_CORR] + hist[b][H_N_INCORR]) == 0) hist[b][H_PCT_CORR] = 0.0; else hist[b][H_PCT_CORR] = hist[b][H_N_CORR] / (hist[b][H_N_CORR]+hist[b][H_N_INCORR]) * 100.0; hist[b][H_EXP_PCT_CORR] = (hist[b][H_TO]+hist[b][H_FROM])/0.02; /* printf("Bin= %d Range= %4.2f %4.2f #corr= %5.0f #incorr= %5.0f " "%%corr=%5.2f %%exp= %5.2f ", b,hist[b][H_FROM],hist[b][H_TO],hist[b][H_N_CORR], hist[b][H_N_INCORR], hist[b][H_PCT_CORR],hist[b][H_EXP_PCT_CORR]); */ } } |