det.c
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#include "sctk.h"
static void Compute_ROC (double *true_scores, int num_true, double *false_scores, int num_false, double **Pdet);
static double ppndf (double p);
/* return true if all the paths in the score structure have hyp confidences */
int hyp_confidences_available(SCORES *scor){
int g, p;
int noconf = 0;
/* search the score for pabiuld the target and non-target arrays */
for (g=0; g<scor->num_grp; g++)
for (p=0; p<scor->grp[g].num_path; p++)
if (! BF_isSET(scor->grp[g].path[p]->attrib,PA_HYP_CONF))
noconf ++;
return(noconf == 0 ? 1 : 0);
}
int make_SCORES_DET_curve(SCORES *scor[], int nscor, char *outroot, int feedback, char *test_name){
double *targ=(double *)0, *non_targ=(double *)0, **det = (double **)0;
int n_targ = 0 , n_non_targ = 0;
int max_targ = 10000, max_non_targ = 10000;
int g, p, w, s;
GRP *gp;
PATH *pp;
FILE *fp, *fpd;
int rtn;
char *gnutics =
"(\"0.1\" -3.08, \"0.5\" -2.57, \"2\" -2.05, \"5\" -1.64, "
"\"10\" -1.28, \"20\" -0.84, \"30\" -0.52, \"40\" -0.25, "
"\"50\" 0.0, \"60\" 0.25, \"70\" 0.52, \"80\" 0.84, \"90\" 1.28, "
"\"95\" 1.64, \"98\" 2.05, \"99.5\" 2.57, \"99.9\" 3.08)";
if (feedback >= 1)
if (hyp_confidences_available(scor[0]))
printf(" Writing DET Curve to '%s.det.[plt,dat]'\n",outroot);
else {
printf(" Skipping DET Curve, no confidence scores supplied.\n");
return 0;
}
/* output the DET Curve GNUPLUT command file */
if ((fpd = fopen(rsprintf("%s.det.plt",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Unable to open DET Curve GNUPLOT file '%s' for"
" writing.",rsprintf("%s.det.plt",outroot));
goto ERROR;
}
fprintf(fpd,"## GNUPLOT command file\n");
fprintf(fpd,"set data style lines\n");
fprintf(fpd,"set size 0.78, 1.0\n");
fprintf(fpd,"set noxtics\n");
fprintf(fpd,"set noytics\n");
if (nscor == 1){
fprintf(fpd,"set title 'DET plot for %s'\n",outroot);
fprintf(fpd,"set nokey\n");
} else {
if (*test_name != (char)0)
fprintf(fpd,"set title 'DET plot for %s Test'\n",test_name);
else
fprintf(fpd,"set title 'DET plot'\n");
}
fprintf(fpd,"set ylabel \"Correct Words Removed (in %%)\"\n");
fprintf(fpd,"set xlabel \"Incorrect Words Retained (in %%)\"\n");
fprintf(fpd,"set grid\n");
fprintf(fpd,"set ytics %s\n",gnutics);
fprintf(fpd,"set xtics %s\n",gnutics);
fprintf(fpd,"plot [-3.290527:3.290527] [-3.290527:3.290527] \\\n");
/* biuld the target and non-target arrays */
for (s=0; s<nscor; s++){
alloc_singZ(targ,max_targ,double,0.0);
alloc_singZ(non_targ,max_non_targ,double,0.0);
for (g=0; g<scor[s]->num_grp; g++){
gp = &(scor[s]->grp[g]);
for (p=0; p<gp->num_path; p++) {
pp = gp->path[p];
for (w=0; w<pp->num; w++) {
if (pp->pset[w].eval == P_CORR &&
*(((WORD*)pp->pset[w].b_ptr)->value) != (TEXT)'\0'){
if (n_targ >= max_targ)
expand_singarr(targ,n_targ,max_targ,2,double);
targ[n_targ++] = ((WORD *)(pp->pset[w].b_ptr))->conf;
} else if (pp->pset[w].eval == P_SUB ||
pp->pset[w].eval == P_INS){
if (n_non_targ >= max_non_targ)
expand_singarr(non_targ,n_non_targ,
max_non_targ,2,double);
non_targ[n_non_targ++] =
((WORD *)(pp->pset[w].b_ptr))->conf;
}
}
}
}
/* allocate the DET table */
alloc_2dimZ(det,(n_targ+n_non_targ),2,double,0.0);
/* calculate the DET Curve */
Compute_ROC (targ, n_targ, non_targ, n_non_targ, det);
/* output the DET Curve data points */
if ((fp = fopen(rsprintf("%s.det.dat.%02d",outroot,s),"w"))== (FILE *)0){
fprintf(stderr,"Error: Unable to open DET Curve data file '%s' for"
" writing.",rsprintf("%s.det.dat.%02d",outroot,s));
goto ERROR;
}
for (w=0; w<n_targ+n_non_targ-1; w++)
fprintf(fp,"%f %f\n",det[w][0],det[w][1]);
fclose(fp);
/**************/
fprintf(fpd," \"%s.det.dat.%02d\" using 2:1 title \"%s\" with lines %d",
outroot,s,scor[s]->title,s+1);
if (s < nscor-1) fprintf(fpd,", \\");
fprintf(fpd,"\n");
if (det != (double**)0) free_2dimarr(det,(n_targ+n_non_targ),double);
if (targ != (double *)0) free_singarr(targ,double);
if (non_targ != (double *)0) free_singarr(non_targ,double);
}
fprintf(fpd,"set ytics\n");
fprintf(fpd,"set xtics\n");
fprintf(fpd,"set size 1.0, 1.0\n");
fprintf(fpd,"set key\n");
fclose(fpd);
rtn = 0;
goto END;
ERROR:
rtn = 1;
END:
if (targ != (double *)0) free_singarr(targ,double);
if (non_targ != (double *)0) free_singarr(non_targ,double);
if (det != (double**)0) free_2dimarr(det,(n_targ+n_non_targ),double);
return(rtn);
}
/*
The Compute_ROC function that I sent to you has a slight error -- it
wasn't computing the last point on the Pmiss/Pfa probability trade-off
curve. This is corrected in the version below. Also, we've been
thinking about what to call these plots that makes better intuitive
sense. I've sort of decided on "DET" or DErT" curves, which stands
for "Detection Error Trade-off" curves. This really does express what
we are plotting, namely the Trade-off between the two kinds of Errors
(Pmiss/Pfa) for Detection tasks.
::::::::::::::
Compute_ROC.m -- corrected
::::::::::::::
function Pdet = Compute_ROC (true_scores, false_scores)
%function Pdet = Compute_ROC (true_scores, false_scores)
%
% Compute_ROC computes the miss/false_alarm probability trade-off
% for a set of scores for the true/false detection hypothesis.
%
% true_scores (false_scores) are detection output scores for a set of
% detection trials, given that the target hypothesis is true (false).
% (It is assumed by convention that the more positive the score, the
% more likely is the target hypothesis.)
%
% Pdet is a two-column matrix containing the detection probability
% trade-off. The first column contains the miss probabilities and
% the second column contains the corresponding false alarm
% probabilities.
%
% See also Make_pROC, Plot_pROC, and Set_DCF.
*/
#define PMIN 0.0005
#define PMAX 0.5
#define SMAX 9E99
#define Cmiss 1.0
#define Cfa 1.0
#define Ptrue 0.05
#define Pfalse 0.05
static void Compute_ROC (double *true_scores, int num_true, double *false_scores, int num_false, double **Pdet){
int ntrue;
int nfalse;
int npts;
qsort ((char *) true_scores, num_true, sizeof (double),
qsort_double_compare);
true_scores[num_true] = SMAX;
qsort ((char *) false_scores, num_false, sizeof (double),
qsort_double_compare);
false_scores[num_false] = SMAX;
ntrue = 1;
nfalse = 1;
npts = 0;
Pdet[npts][0] = ppndf (PMIN);
Pdet[npts][1] = ppndf (PMAX);
while ((ntrue < num_true) || (nfalse < num_false)) {
/* printf ("ntrue = %d, nfalse = %d, npts = %d, trsc = %lf, fasc =%lf\n",
ntrue, nfalse, npts, true_scores[ntrue], false_scores[nfalse]); */
/* bug fix JGF, the previous expression assumed an highest score would
ALLWAYS be a TRUE score */
if ((true_scores[ntrue] <= false_scores[nfalse]) &&
(ntrue < num_true))
ntrue = ntrue+1;
else
nfalse = nfalse+1;
/* end */
npts = npts+1;
Pdet[npts][0] = ((double) (ntrue-1) / (double) num_true);
Pdet[npts][1] = ((double) (num_false - (nfalse-1)) / (double) num_false);
Pdet[npts][0] = ppndf (Pdet[npts][0]);
Pdet[npts][1] = ppndf (Pdet[npts][1]);
/* printf ("point %f %f\n", Pdet[npts][0], Pdet[npts][1]); */
}
}
/*
Convert lines with ROC coordinates to normal deviate scale.
Ignore lines beginning with "#" (9/26/94)
*/
#ifndef abs
#define abs(x) (x < 0 ? -x : x)
#endif
#define SPLIT 0.42
#define A0 2.5066282388
#define A1 -18.6150006252
#define A2 41.3911977353
#define A3 -25.4410604963
#define B1 -8.4735109309
#define B2 23.0833674374
#define B3 -21.0622410182
#define B4 3.1308290983
#define C0 -2.7871893113
#define C1 -2.2979647913
#define C2 4.8501412713
#define C3 2.3212127685
#define D1 3.5438892476
#define D2 1.6370678189
#define LL 140
#define eps 2.2204e-16
static double ppndf (double p){
double q;
double r;
double retval;
/* printf ("p = %f\n", p); */
if (p >= 1.0)
p = 1 - eps;
if (p <= 0.0)
p = eps;
q = p - 0.5;
if (abs(q) <= SPLIT){
r = q * q;
retval = q * (((A3 * r + A2) * r + A1) * r + A0) /
((((B4 * r + B3) * r + B2) * r + B1) * r + 1.0);
} else {
r = (q > 0.0 ? 1.0 - p : p);
if (r <= 0.0){
fprintf (stderr,"Warning: Found r = %f\n", r);
return(0.0);
}
r = sqrt ((-1.0) * log (r));
retval = (((C3 * r + C2) * r + C1) * r + C0) /
((D2 * r + D1) * r + 1.0);
if (q < 0)
retval *= -1.0;
}
return (retval);
}
/****************************************************************************
*
* The functions below create the binned confidence graphs
*
*
*
****************************************************************************/
#define H_TO 0
#define H_FROM 1
#define H_PCT_CORR 2
#define H_EXP_PCT_CORR 3
#define H_N_CORR 4
#define H_N_INCORR 5
#define NUM_H_ELEM 6
static void binned_confidences(SCORES *scor, double from, double to, int nbin, double **hist);
int make_confidence_histogram(SCORES *scor, char *outroot, int feedback){
double **hist = (double **)0;
FILE *fp_dat1, *fp_plt;
int rtn, b, nbin = 100;
if (feedback >= 1)
if (hyp_confidences_available(scor))
printf(" Writing Confidence Histogram '%s.hist.[plt,dat]'\n",
outroot);
else {
printf(" Skipping Confidence Histogram, no confidence scores supplied.\n");
return 0;
}
/* allocate memory */
alloc_2dimZ(hist,nbin,NUM_H_ELEM,double,0.0);
binned_confidences(scor, 0.0, 1.0, nbin, hist);
/* output the Binned histogram data points */
if ((fp_dat1 = fopen(rsprintf("%s.hist.dat",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Writing Binned Histogram file '%s' for"
" writing.",rsprintf("%s.bhist.dat1",outroot));
goto ERROR;
}
for (b=0; b<nbin; b++){
fprintf(fp_dat1,"%f %f %f %f\n",hist[b][H_FROM],
hist[b][H_N_CORR]+hist[b][H_N_INCORR],
hist[b][H_N_CORR],hist[b][H_N_INCORR]);
fprintf(fp_dat1,"%f %f %f %f\n",hist[b][H_TO],
hist[b][H_N_CORR]+hist[b][H_N_INCORR],
hist[b][H_N_CORR],hist[b][H_N_INCORR]);
}
fclose(fp_dat1);
/* output the Binned histogram GNUPLUT command file */
if ((fp_plt = fopen(rsprintf("%s.hist.plt",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Unable to open Binned Histogram"
"GNUPLOT file '%s' for writing.",
rsprintf("%s.bhist.plt",outroot));
goto ERROR;
}
fprintf(fp_plt,"set samples 1000\n");
fprintf(fp_plt,"set xrange [0.000000:1.000000]\n");
fprintf(fp_plt,"set autoscale y\n");
fprintf(fp_plt,"set size 0.78, 1.0\n");
fprintf(fp_plt,"set nogrid\n");
fprintf(fp_plt,"set ylabel 'Counts'\n");
fprintf(fp_plt,"set xlabel 'Confidence Measure'\n");
fprintf(fp_plt,"set title 'Confidence scores for %s'\n",outroot);
fprintf(fp_plt,
"plot '%s.hist.dat' using 1:2 '%%f%%f' title 'All Conf.'"
" with lines, \\\n"
" '%s.hist.dat' using 1:2 '%%f%%*s%%f' title 'Correct Conf.'"
" with lines, \\\n"
" '%s.hist.dat' using 1:2 '%%f%%*s%%*s%%f' title 'Incorrect"
" Conf.' with lines\n",outroot,outroot,outroot);
fprintf(fp_plt,"set size 1.0, 1.0\n");
fclose(fp_plt);
rtn = 0;
goto END;
ERROR:
rtn = 1;
END:
if (hist != (double**)0) free_2dimarr(hist,nbin,double);
return(rtn);
}
int make_binned_confidence(SCORES *scor, char *outroot, int feedback){
double **hist = (double **)0;
FILE *fp_dat1, *fp_plt;
int rtn, b, nbin = 10;
if (feedback >= 1)
if (hyp_confidences_available(scor))
printf(" Writing Binned Histogram '%s.bhist.[plt,dat1]'\n",
outroot);
else {
printf(" Skipping Binned Histogram, no confidence scores supplied.\n");
return 0;
}
/* allocate memory */
alloc_2dimZ(hist,nbin,NUM_H_ELEM,double,0.0);
binned_confidences(scor, 0.0, 1.0, nbin, hist);
/* output the Binned histogram data points */
if ((fp_dat1 = fopen(rsprintf("%s.bhist.dat1",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Writing Binned Histogram file '%s' for"
" writing.",rsprintf("%s.bhist.dat1",outroot));
goto ERROR;
}
for (b=0; b<nbin; b++){
fprintf(fp_dat1,"%.4f %f 1 1 0.1\n",(b*0.1) + 0.05,hist[b][H_PCT_CORR]);
}
fclose(fp_dat1);
/* output the Binned histogram GNUPLUT command file */
if ((fp_plt = fopen(rsprintf("%s.bhist.plt",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Unable to open Binned Histogram"
"GNUPLOT file '%s' for writing.",
rsprintf("%s.bhist.plt",outroot));
goto ERROR;
}
fprintf(fp_plt,"## GNUPLOT command file\n");
fprintf(fp_plt,"set samples 1000\n");
fprintf(fp_plt,"set key 30.000000,90.000000\n");
fprintf(fp_plt,"set xrange [0:1]\n");
fprintf(fp_plt,"set yrange [0:100]\n");
fprintf(fp_plt,"set nogrid\n");
fprintf(fp_plt,"set ylabel '%% Hypothesis Correct'\n");
fprintf(fp_plt,"set xlabel 'Confidence Scores'\n");
fprintf(fp_plt,"set title 'Binned Confidence scores for %s'\n",outroot);
fprintf(fp_plt,"set size 0.78,1\n");
fprintf(fp_plt,"set nolabel\n");
fprintf(fp_plt,"plot '%s.bhist.dat1' title 'True' with boxes,\\\n",
outroot);
fprintf(fp_plt," x*100 title 'Predicted' with lines\n");
fprintf(fp_plt,"set size 1.0, 1.0\n");
fclose(fp_plt);
rtn = 0;
goto END;
ERROR:
rtn = 1;
END:
if (hist != (double**)0) free_2dimarr(hist,nbin,double);
return(rtn);
}
int make_scaled_binned_confidence(SCORES *scor, char *outroot, int bins, int feedback){
int curlen = 1000, nword=0;
int *eval, i, p, w, *sort, sum_corr = 0, sum_err = 0, rtn, b, l;
double *conf;
FILE *fp_dat, *fp_plt;
if (feedback >= 1)
if (hyp_confidences_available(scor))
printf(" Writing Scaled Binned Histogram '%s.sbhist.[plt,dat]'\n",
outroot);
else{
printf(" Skipping Scaled Binned Histogram, no confidence scores supplied.\n");
return 0;
}
/* algo, :
1: make a list of all confidences, with either corr or incorr flags
2: sort the confidences
3: divide it up into N chunks to make the histogram
*/
/* step 1 */
alloc_singZ(conf,curlen,double,0.0);
alloc_singZ(eval,curlen,int,0);
for (i=0; i<scor->num_grp; i++)
for (p=0; p<scor->grp[i].num_path; p++){
PATH *path = scor->grp[i].path[p];
for (w=0; w<path->num; w++)
if ((path->pset[w].eval != P_DEL) &&
(*(((WORD*)path->pset[w].b_ptr)->value) != (TEXT)'\0')){
if (nword+1 == curlen){
expand_1dimZ(conf,nword,curlen,2,double,0.0,0);
expand_1dimZ(eval,nword,curlen,2,int,0,1);
}
conf[nword] = ((WORD *)path->pset[w].b_ptr)->conf;
eval[nword] = path->pset[w].eval;
nword++;
}
}
/* step 2 */
alloc_singZ(sort,curlen,int,0);
sort_double_arr(conf, nword, sort, INCREASING);
/* write the graph */
if ((fp_dat = fopen(rsprintf("%s.sbhist.dat",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Writing Scaled Binned Histogram file '%s' for"
" writing.",rsprintf("%s.sbhist.dat",outroot));
goto ERROR;
}
for (b=nword / bins, l=0; l < b && l < nword; ){
double min, max;
for (w=l, min=99999.0, max=(-99999.9), sum_err=sum_corr=0; w<b; w++){
if (eval[sort[w]] == P_CORR)
sum_corr ++;
else
sum_err ++;
if (min > conf[sort[w]]) min = conf[sort[w]];
if (max < conf[sort[w]]) max = conf[sort[w]];
}
fprintf(fp_dat,"%f %f 1 1 %f\n",(min+max)/2,
(float)sum_corr/(sum_err+sum_corr)*100.0,(max-min));
l=b;
b += nword/bins;
/* on the last bin, add the leftover words,
(from doing modulo arithmetic) to it */
if (b + (nword/bins) > nword) b = nword;
}
fclose(fp_dat);
/* output the Scaled Binned histogram GNUPLUT command file */
if ((fp_plt = fopen(rsprintf("%s.sbhist.plt",outroot),"w")) == (FILE *)0){
fprintf(stderr,"Error: Unable to open Scaled Binned Histogram"
"GNUPLOT file '%s' for writing.",
rsprintf("%s.sbhist.plt",outroot));
goto ERROR;
}
fprintf(fp_plt,"## GNUPLOT command file\n");
fprintf(fp_plt,"set samples 1000\n");
fprintf(fp_plt,"set key 30.000000,90.000000\n");
fprintf(fp_plt,"set xrange [0:1]\n");
fprintf(fp_plt,"set yrange [0:100]\n");
fprintf(fp_plt,"set ylabel '%% Hypothesis Correct'\n");
fprintf(fp_plt,"set xlabel 'Confidence Scores'\n");
fprintf(fp_plt,"set title 'Scaled Binned Confidence scores for %s'\n",
outroot);
fprintf(fp_plt,"set nogrid\n");
fprintf(fp_plt,"set size 0.78,1\n");
fprintf(fp_plt,"set nolabel\n");
fprintf(fp_plt,"plot '%s.sbhist.dat' title 'True' with boxes, x*100 title 'Expected'\n",
outroot);
fprintf(fp_plt,"set size 1.0, 1.0\n");
fprintf(fp_plt,"set key\n");
fclose(fp_plt);
rtn = 0;
goto END;
ERROR:
rtn = 1;
END:
free_singarr(conf,double);
free_singarr(eval,int);
free_singarr(sort,int);
return(rtn);
}
/*
hist[x][H_PCT_CORR] is the percent correct in bin 'x'
hist[x][H_EXP_PCT_CORR] is the expected correct in bin 'x'
hist[x][H_N_CORR] is the number of corrent words in bin 'x'
hist[x][H_N_INCORR] is the number of incorrect words in bin 'x'
*/
static void binned_confidences(SCORES *scor, double c_from, double c_to, int nbin, double **hist){
int i, p, w, b, index;
double index_d;
double range = c_to - c_from;
int range_errors = 0;
for (b=0; b<nbin; b++){
hist[b][H_FROM] = b * (range / (double)nbin);
hist[b][H_TO] = (b + 1) * (range / (double)nbin);
hist[b][H_N_CORR] = hist[b][H_N_INCORR] = 0;
}
for (i=0; i<scor->num_grp; i++){
for (p=0; p<scor->grp[i].num_path; p++){
PATH *path = scor->grp[i].path[p];
for (w=0; w<path->num; w++) {
if ((path->pset[w].eval != P_DEL) &&
(*(((WORD*)path->pset[w].b_ptr)->value) != (TEXT)'\0')){
index_d = (((WORD *)path->pset[w].b_ptr)->conf - c_from)
/ range * (double)(nbin);
index = (int)index_d;
if (index_d <= (double)nbin && index == nbin)
index = nbin - 1;
if (index < 0 || index >= nbin){
range_errors ++;
} else
if (path->pset[w].eval == P_CORR)
hist[index][H_N_CORR] ++;
else
hist[index][H_N_INCORR]++;
}
}
}
}
if (range_errors > 0){
fprintf(stderr,"Warning: %d Confidence scores out of binning range %f:%f\n",
range_errors,c_from,c_to);
}
for (b=0; b<nbin; b++){
if ((hist[b][H_N_CORR] + hist[b][H_N_INCORR]) == 0)
hist[b][H_PCT_CORR] = 0.0;
else
hist[b][H_PCT_CORR] = hist[b][H_N_CORR] /
(hist[b][H_N_CORR]+hist[b][H_N_INCORR]) * 100.0;
hist[b][H_EXP_PCT_CORR] = (hist[b][H_TO]+hist[b][H_FROM])/0.02;
/*
printf("Bin= %d Range= %4.2f %4.2f #corr= %5.0f #incorr= %5.0f "
"%%corr=%5.2f %%exp= %5.2f\n",
b,hist[b][H_FROM],hist[b][H_TO],hist[b][H_N_CORR],
hist[b][H_N_INCORR],
hist[b][H_PCT_CORR],hist[b][H_EXP_PCT_CORR]);
*/
}
}