Blame view
egs/callhome_egyptian/s5/local/nnet3/run_tdnn.sh
2.08 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
#!/bin/bash # this is the standard "tdnn" system, built in nnet3; it's what we use to # call multi-splice. # At this script level we don't support not running on GPU, as it would be painfully slow. # If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false, # --num-threads 16 and --minibatch-size 128. stage=0 train_stage=-10 dir=exp/nnet3/nnet_tdnn_a . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage || exit 1; if [ $stage -le 8 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{3,4,5,6}/$USER/kaldi-data/egs/eca-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi # Note that the alignments used come from the pnorm-ensemble model # If you choose to skip ensemble training (which is slow), use the best # fmllr alignments available (tri4a) steps/nnet3/train_tdnn.sh --stage $train_stage \ --num-epochs 8 --num-jobs-initial 2 --num-jobs-final 14 \ --splice-indexes "-4,-3,-2,-1,0,1,2,3,4 0 -2,2 0 -4,4 0" \ --feat-type raw \ --online-ivector-dir exp/nnet3/ivectors_train \ --cmvn-opts "--norm-means=false --norm-vars=false" \ --initial-effective-lrate 0.005 --final-effective-lrate 0.0005 \ --cmd "$decode_cmd" \ --pnorm-input-dim 2000 \ --pnorm-output-dim 250 \ data/train_hires data/lang exp/tri5a_ali $dir || exit 1; fi if [ $stage -le 9 ]; then # this does offline decoding that should give the same results as the real # online decoding. graph_dir=exp/tri5a/graph # use already-built graphs. for data in dev test sup h5; do steps/nnet3/decode.sh --nj 8 --cmd "$decode_cmd" \ --online-ivector-dir exp/nnet3/ivectors_${data} \ $graph_dir data/${data}_hires $dir/decode_${data} || exit 1; done fi |