run_tdnn.sh
2.08 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/bin/bash
# this is the standard "tdnn" system, built in nnet3; it's what we use to
# call multi-splice.
# At this script level we don't support not running on GPU, as it would be painfully slow.
# If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
# --num-threads 16 and --minibatch-size 128.
stage=0
train_stage=-10
dir=exp/nnet3/nnet_tdnn_a
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
local/nnet3/run_ivector_common.sh --stage $stage || exit 1;
if [ $stage -le 8 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/eca-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
# Note that the alignments used come from the pnorm-ensemble model
# If you choose to skip ensemble training (which is slow), use the best
# fmllr alignments available (tri4a)
steps/nnet3/train_tdnn.sh --stage $train_stage \
--num-epochs 8 --num-jobs-initial 2 --num-jobs-final 14 \
--splice-indexes "-4,-3,-2,-1,0,1,2,3,4 0 -2,2 0 -4,4 0" \
--feat-type raw \
--online-ivector-dir exp/nnet3/ivectors_train \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--initial-effective-lrate 0.005 --final-effective-lrate 0.0005 \
--cmd "$decode_cmd" \
--pnorm-input-dim 2000 \
--pnorm-output-dim 250 \
data/train_hires data/lang exp/tri5a_ali $dir || exit 1;
fi
if [ $stage -le 9 ]; then
# this does offline decoding that should give the same results as the real
# online decoding.
graph_dir=exp/tri5a/graph
# use already-built graphs.
for data in dev test sup h5; do
steps/nnet3/decode.sh --nj 8 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet3/ivectors_${data} \
$graph_dir data/${data}_hires $dir/decode_${data} || exit 1;
done
fi