Blame view

egs/tedlium/s5/local/online/run_nnet2_ms_perturbed.sh 8.6 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  #!/bin/bash
  
  # Copyright 2013  Johns Hopkins University (author: Daniel Povey)
  #           2014  Tom Ko
  #           2014  Vijay Peddinti
  # Apache 2.0
  
  # This example script demonstrates how speed perturbation of the data helps the nnet training in the SWB setup.
  
  . ./cmd.sh
  set -e
  stage=0
  train_stage=-10
  use_gpu=true
  splice_indexes="layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-7:2"
  common_egs_dir=
  dir=exp/nnet2_online/nnet_ms_sp
  has_fisher=true
  
  . ./path.sh
  . ./utils/parse_options.sh
  
  if $use_gpu; then
    if ! cuda-compiled; then
      cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.  Otherwise, call this script with --use-gpu false
  EOF
    fi
    parallel_opts="--gpu 1"
    num_threads=1
    minibatch_size=512
    # the _a is in case I want to change the parameters.
  else
    # Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
    # almost the same, but this may be a little bit slow.
    num_threads=16
    minibatch_size=128
    parallel_opts="--num-threads $num_threads"
  fi
  
  
  # Run the common stages of training, including training the iVector extractor
  local/online/run_nnet2_common.sh --stage $stage || exit 1;
  
  if [ $stage -le 6 ]; then
    #Although the nnet will be trained by high resolution data, we still have to perturbe the normal data to get the alignment
    # _sp stands for speed-perturbed
    utils/perturb_data_dir_speed.sh 0.9 data/train data/temp1
    utils/perturb_data_dir_speed.sh 1.0 data/train data/temp2
    utils/perturb_data_dir_speed.sh 1.1 data/train data/temp3
    utils/combine_data.sh --extra-files utt2uniq data/train_sp data/temp1 data/temp2 data/temp3
    rm -r data/temp1 data/temp2 data/temp3
  
    mfccdir=mfcc_perturbed
    for x in train_sp; do
      steps/make_mfcc.sh --cmd "$train_cmd" --nj 50 \
        data/$x exp/make_mfcc/$x $mfccdir || exit 1;
      steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1;
    done
    utils/fix_data_dir.sh data/train_sp
  fi
  
  if [ $stage -le 7 ]; then
    #obtain the alignment of the perturbed data
    steps/align_fmllr.sh --nj 100 --cmd "$train_cmd" \
      data/train_sp data/lang exp/tri3 exp/tri3_ali_sp || exit 1
  fi
  
  if [ $stage -le 8 ]; then
    #Now perturb the high resolution daa
    utils/perturb_data_dir_speed.sh 0.9 data/train_hires data/temp1
    utils/perturb_data_dir_speed.sh 1.0 data/train_hires data/temp2
    utils/perturb_data_dir_speed.sh 1.1 data/train_hires data/temp3
    utils/combine_data.sh --extra-files utt2uniq data/train_hires_sp data/temp1 data/temp2 data/temp3
    rm -r data/temp1 data/temp2 data/temp3
  
    mfccdir=mfcc_perturbed
    for x in train_hires_sp; do
      steps/make_mfcc.sh --cmd "$train_cmd" --nj 70 --mfcc-config conf/mfcc_hires.conf \
        data/$x exp/make_hires/$x $mfccdir || exit 1;
      steps/compute_cmvn_stats.sh data/$x exp/make_hires/$x $mfccdir || exit 1;
    done
    utils/fix_data_dir.sh data/train_hires_sp
  fi
  
  if [ $stage -le 9 ]; then
    # We extract iVectors on all the train data, which will be what we
    # train the system on.
  
    # having a larger number of speakers is helpful for generalization, and to
    # handle per-utterance decoding well (iVector starts at zero).
    steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires_sp data/train_hires_sp_max2
  
    steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \
      data/train_hires_sp_max2 exp/nnet2_online/extractor exp/nnet2_online/ivectors_train_hires_sp2 || exit 1;
  fi
  
  if [ $stage -le 10 ]; then
    steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \
      --num-epochs 3 --num-jobs-initial 2 --num-jobs-final 12 \
      --num-hidden-layers 6 --splice-indexes "$splice_indexes" \
      --feat-type raw \
      --online-ivector-dir exp/nnet2_online/ivectors_train_hires_sp2 \
      --cmvn-opts "--norm-means=false --norm-vars=false" \
      --num-threads "$num_threads" \
      --minibatch-size "$minibatch_size" \
      --parallel-opts "$parallel_opts" \
      --io-opts "--max-jobs-run 12" \
      --add-layers-period 1 \
      --mix-up 6000 \
      --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \
      --cmd "$decode_cmd" \
      --egs-dir "$common_egs_dir" \
      --pnorm-input-dim 3500 \
      --pnorm-output-dim 350 \
      data/train_hires_sp data/lang exp/tri3_ali_sp $dir  || exit 1;
  fi
  
  if [ $stage -le 11 ]; then
    # dump iVectors for the testing data.
    for decode_set in dev test; do
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $num_jobs \
          data/${decode_set}_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_${decode_set}_hires || exit 1;
    done
  fi
  
  if [ $stage -le 12 ]; then
    # this does offline decoding that should give about the same results as the
    # real online decoding (the one with --per-utt true)
    for decode_set in dev test; do
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        decode_dir=$dir/decode_${decode_set}
        steps/nnet2/decode.sh --nj $num_jobs --cmd "$decode_cmd" --config conf/decode.config \
          --online-ivector-dir exp/nnet2_online/ivectors_${decode_set}_hires \
          exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
        steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
    done
  fi
  
  
  if [ $stage -le 13 ]; then
    # If this setup used PLP features, we'd have to give the option --feature-type plp
    # to the script below.
    steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
      data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1;
  fi
  wait;
  
  if [ $stage -le 14 ]; then
    # do the actual online decoding with iVectors, carrying info forward from
    # previous utterances of the same speaker.
    for decode_set in dev test; do
      num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
      decode_dir=${dir}_online/decode_${decode_set}
      steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
        exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
      steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
    done
  fi
  
  if [ $stage -le 15 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information.
    for decode_set in dev test; do
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        decode_dir=${dir}_online/decode_${decode_set}_utt
        steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
          --per-utt true exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
        steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
    done
  fi
  
  if [ $stage -le 16 ]; then
    # this version of the decoding treats each utterance separately
    # without carrying forward speaker information, but looks to the end
    # of the utterance while computing the iVector (--online false)
    for decode_set in dev test; do
        num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
        decode_dir=${dir}_online/decode_${decode_set}_utt_offline
        steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
          --per-utt true --online false exp/tri3/graph data/${decode_set}_hires \
            $decode_dir || exit 1;
        steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
    done
  fi
  wait;
  
  if [ $stage -le 17 ]; then
    # prepare the build for distribution
    cat <<EOF >${dir}_online/sample_decode.sh
  . ./cmd.sh
  data_dir=\$1  # e.g. data/dev_hires (to be prepared by the user, see egs/tedlium/run.sh for examples)
  model_dir=\$2 # e.g. exp/nnet2_online/nnet_ms_sp_online (provided in the distribution)
  
  decode_dir=\$model_dir/\`basename \$data_dir\`
  num_jobs=\`cat \$data_dir/spk2utt | wc -l\`
  # note that the graph directory (exp/tri3/graph) is not provided in the distribution
  steps/online/nnet2/decode.sh --cmd "\$decode_cmd" --nj \$num_jobs \
    exp/tri3/graph \$data_dir \$decode_dir ;
  EOF
    chmod +x ${dir}_online/sample_decode.sh
    dist_file=tedlium_`basename $dir`.tgz
    utils/prepare_online_nnet_dist_build.sh --other-files ${dir}_online/sample_decode.sh data/lang ${dir}_online $dist_file
    echo "NOTE: If you would like to upload this build ($dist_file) to kaldi-asr.org please check the process at http://kaldi-asr.org/uploads.html"
  fi
  
  exit 0;