run_nnet2_ms_perturbed.sh
8.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/bin/bash
# Copyright 2013 Johns Hopkins University (author: Daniel Povey)
# 2014 Tom Ko
# 2014 Vijay Peddinti
# Apache 2.0
# This example script demonstrates how speed perturbation of the data helps the nnet training in the SWB setup.
. ./cmd.sh
set -e
stage=0
train_stage=-10
use_gpu=true
splice_indexes="layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-7:2"
common_egs_dir=
dir=exp/nnet2_online/nnet_ms_sp
has_fisher=true
. ./path.sh
. ./utils/parse_options.sh
if $use_gpu; then
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed. Otherwise, call this script with --use-gpu false
EOF
fi
parallel_opts="--gpu 1"
num_threads=1
minibatch_size=512
# the _a is in case I want to change the parameters.
else
# Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
# almost the same, but this may be a little bit slow.
num_threads=16
minibatch_size=128
parallel_opts="--num-threads $num_threads"
fi
# Run the common stages of training, including training the iVector extractor
local/online/run_nnet2_common.sh --stage $stage || exit 1;
if [ $stage -le 6 ]; then
#Although the nnet will be trained by high resolution data, we still have to perturbe the normal data to get the alignment
# _sp stands for speed-perturbed
utils/perturb_data_dir_speed.sh 0.9 data/train data/temp1
utils/perturb_data_dir_speed.sh 1.0 data/train data/temp2
utils/perturb_data_dir_speed.sh 1.1 data/train data/temp3
utils/combine_data.sh --extra-files utt2uniq data/train_sp data/temp1 data/temp2 data/temp3
rm -r data/temp1 data/temp2 data/temp3
mfccdir=mfcc_perturbed
for x in train_sp; do
steps/make_mfcc.sh --cmd "$train_cmd" --nj 50 \
data/$x exp/make_mfcc/$x $mfccdir || exit 1;
steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1;
done
utils/fix_data_dir.sh data/train_sp
fi
if [ $stage -le 7 ]; then
#obtain the alignment of the perturbed data
steps/align_fmllr.sh --nj 100 --cmd "$train_cmd" \
data/train_sp data/lang exp/tri3 exp/tri3_ali_sp || exit 1
fi
if [ $stage -le 8 ]; then
#Now perturb the high resolution daa
utils/perturb_data_dir_speed.sh 0.9 data/train_hires data/temp1
utils/perturb_data_dir_speed.sh 1.0 data/train_hires data/temp2
utils/perturb_data_dir_speed.sh 1.1 data/train_hires data/temp3
utils/combine_data.sh --extra-files utt2uniq data/train_hires_sp data/temp1 data/temp2 data/temp3
rm -r data/temp1 data/temp2 data/temp3
mfccdir=mfcc_perturbed
for x in train_hires_sp; do
steps/make_mfcc.sh --cmd "$train_cmd" --nj 70 --mfcc-config conf/mfcc_hires.conf \
data/$x exp/make_hires/$x $mfccdir || exit 1;
steps/compute_cmvn_stats.sh data/$x exp/make_hires/$x $mfccdir || exit 1;
done
utils/fix_data_dir.sh data/train_hires_sp
fi
if [ $stage -le 9 ]; then
# We extract iVectors on all the train data, which will be what we
# train the system on.
# having a larger number of speakers is helpful for generalization, and to
# handle per-utterance decoding well (iVector starts at zero).
steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 data/train_hires_sp data/train_hires_sp_max2
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \
data/train_hires_sp_max2 exp/nnet2_online/extractor exp/nnet2_online/ivectors_train_hires_sp2 || exit 1;
fi
if [ $stage -le 10 ]; then
steps/nnet2/train_multisplice_accel2.sh --stage $train_stage \
--num-epochs 3 --num-jobs-initial 2 --num-jobs-final 12 \
--num-hidden-layers 6 --splice-indexes "$splice_indexes" \
--feat-type raw \
--online-ivector-dir exp/nnet2_online/ivectors_train_hires_sp2 \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--num-threads "$num_threads" \
--minibatch-size "$minibatch_size" \
--parallel-opts "$parallel_opts" \
--io-opts "--max-jobs-run 12" \
--add-layers-period 1 \
--mix-up 6000 \
--initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \
--cmd "$decode_cmd" \
--egs-dir "$common_egs_dir" \
--pnorm-input-dim 3500 \
--pnorm-output-dim 350 \
data/train_hires_sp data/lang exp/tri3_ali_sp $dir || exit 1;
fi
if [ $stage -le 11 ]; then
# dump iVectors for the testing data.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $num_jobs \
data/${decode_set}_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_${decode_set}_hires || exit 1;
done
fi
if [ $stage -le 12 ]; then
# this does offline decoding that should give about the same results as the
# real online decoding (the one with --per-utt true)
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
decode_dir=$dir/decode_${decode_set}
steps/nnet2/decode.sh --nj $num_jobs --cmd "$decode_cmd" --config conf/decode.config \
--online-ivector-dir exp/nnet2_online/ivectors_${decode_set}_hires \
exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
done
fi
if [ $stage -le 13 ]; then
# If this setup used PLP features, we'd have to give the option --feature-type plp
# to the script below.
steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1;
fi
wait;
if [ $stage -le 14 ]; then
# do the actual online decoding with iVectors, carrying info forward from
# previous utterances of the same speaker.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
decode_dir=${dir}_online/decode_${decode_set}
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
done
fi
if [ $stage -le 15 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
decode_dir=${dir}_online/decode_${decode_set}_utt
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
--per-utt true exp/tri3/graph data/${decode_set}_hires $decode_dir || exit 1;
steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
done
fi
if [ $stage -le 16 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information, but looks to the end
# of the utterance while computing the iVector (--online false)
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
decode_dir=${dir}_online/decode_${decode_set}_utt_offline
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
--per-utt true --online false exp/tri3/graph data/${decode_set}_hires \
$decode_dir || exit 1;
steps/lmrescore_const_arpa.sh data/lang_test data/lang_rescore data/${decode_set}_hires $decode_dir $decode_dir.rescore || exit 1
done
fi
wait;
if [ $stage -le 17 ]; then
# prepare the build for distribution
cat <<EOF >${dir}_online/sample_decode.sh
. ./cmd.sh
data_dir=\$1 # e.g. data/dev_hires (to be prepared by the user, see egs/tedlium/run.sh for examples)
model_dir=\$2 # e.g. exp/nnet2_online/nnet_ms_sp_online (provided in the distribution)
decode_dir=\$model_dir/\`basename \$data_dir\`
num_jobs=\`cat \$data_dir/spk2utt | wc -l\`
# note that the graph directory (exp/tri3/graph) is not provided in the distribution
steps/online/nnet2/decode.sh --cmd "\$decode_cmd" --nj \$num_jobs \
exp/tri3/graph \$data_dir \$decode_dir ;
EOF
chmod +x ${dir}_online/sample_decode.sh
dist_file=tedlium_`basename $dir`.tgz
utils/prepare_online_nnet_dist_build.sh --other-files ${dir}_online/sample_decode.sh data/lang ${dir}_online $dist_file
echo "NOTE: If you would like to upload this build ($dist_file) to kaldi-asr.org please check the process at http://kaldi-asr.org/uploads.html"
fi
exit 0;