Blame view

egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1g.sh 10.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  #!/bin/bash
  
  # 1g is as 1f but moving to a factorized TDNN (TDNN-F) model, re-tuning it, and
  #  switching to unconstrained egs (the last of which gives around 0.1%
  #  improvement).  (Note: I don't believe the Tedlium TDNN models were,
  #  previously, very well-tuned).
  
  # local/chain/compare_wer_general.sh exp/chain_cleaned/tdnn1f_sp_bi exp/chain_cleaned/tdnn1g_sp
  # System                tdnn1f_sp_bi tdnn1g_sp
  # WER on dev(orig)            8.9       7.9
  # WER on dev(rescored)        8.1       7.3
  # WER on test(orig)           9.1       8.0
  # WER on test(rescored)       8.6       7.6
  # Final train prob        -0.1026   -0.0637
  # Final valid prob        -0.1031   -0.0750
  # Final train prob (xent)   -1.4370   -0.9792
  # Final valid prob (xent)   -1.4670   -0.9951
  # Num-params                 6994800   9431072
  
  # steps/info/chain_dir_info.pl exp/chain_cleaned/tdnn1g_sp
  # exp/chain_cleaned/tdnn1g_sp: num-iters=108 nj=3..12 num-params=9.4M dim=40+100->3600 combine=-0.060->-0.060 (over 2) xent:train/valid[71,107,final]=(-1.30,-0.985,-0.979/-1.29,-1.00,-0.995) logprob:train/valid[71,107,final]=(-0.098,-0.065,-0.064/-0.100,-0.075,-0.075)
  
  ## how you run this (note: this assumes that the run_tdnn.sh soft link points here;
  ## otherwise call it directly in its location).
  # by default, with cleanup:
  # local/chain/run_tdnn.sh
  
  # without cleanup:
  # local/chain/run_tdnn.sh  --train-set train --gmm tri3 --nnet3-affix "" &
  
  set -e -o pipefail
  
  # First the options that are passed through to run_ivector_common.sh
  # (some of which are also used in this script directly).
  stage=0
  nj=30
  decode_nj=30
  min_seg_len=1.55
  xent_regularize=0.1
  dropout_schedule='0,0@0.20,0.5@0.50,0'
  
  train_set=train_cleaned
  gmm=tri3_cleaned  # the gmm for the target data
  num_threads_ubm=32
  nnet3_affix=_cleaned  # cleanup affix for nnet3 and chain dirs, e.g. _cleaned
  
  # The rest are configs specific to this script.  Most of the parameters
  # are just hardcoded at this level, in the commands below.
  train_stage=-10
  tree_affix=  # affix for tree directory, e.g. "a" or "b", in case we change the configuration.
  tdnn_affix=1g  #affix for TDNN directory, e.g. "a" or "b", in case we change the configuration.
  common_egs_dir=  # you can set this to use previously dumped egs.
  remove_egs=true
  
  # End configuration section.
  echo "$0 $@"  # Print the command line for logging
  
  . ./cmd.sh
  . ./path.sh
  . ./utils/parse_options.sh
  
  
  if ! cuda-compiled; then
    cat <<EOF && exit 1
  This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
  If you want to use GPUs (and have them), go to src/, and configure and make on a machine
  where "nvcc" is installed.
  EOF
  fi
  
  local/nnet3/run_ivector_common.sh --stage $stage \
                                    --nj $nj \
                                    --min-seg-len $min_seg_len \
                                    --train-set $train_set \
                                    --gmm $gmm \
                                    --num-threads-ubm $num_threads_ubm \
                                    --nnet3-affix "$nnet3_affix"
  
  
  gmm_dir=exp/$gmm
  ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
  tree_dir=exp/chain${nnet3_affix}/tree_bi${tree_affix}
  lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats
  dir=exp/chain${nnet3_affix}/tdnn${tdnn_affix}_sp_bi
  train_data_dir=data/${train_set}_sp_hires_comb
  lores_train_data_dir=data/${train_set}_sp_comb
  train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
  
  
  for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
      $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
    [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
  done
  
  if [ $stage -le 14 ]; then
    echo "$0: creating lang directory with one state per phone."
    # Create a version of the lang/ directory that has one state per phone in the
    # topo file. [note, it really has two states.. the first one is only repeated
    # once, the second one has zero or more repeats.]
    if [ -d data/lang_chain ]; then
      if [ data/lang_chain/L.fst -nt data/lang/L.fst ]; then
        echo "$0: data/lang_chain already exists, not overwriting it; continuing"
      else
        echo "$0: data/lang_chain already exists and seems to be older than data/lang..."
        echo " ... not sure what to do.  Exiting."
        exit 1;
      fi
    else
      cp -r data/lang data/lang_chain
      silphonelist=$(cat data/lang_chain/phones/silence.csl) || exit 1;
      nonsilphonelist=$(cat data/lang_chain/phones/nonsilence.csl) || exit 1;
      # Use our special topology... note that later on may have to tune this
      # topology.
      steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >data/lang_chain/topo
    fi
  fi
  
  if [ $stage -le 15 ]; then
    # Get the alignments as lattices (gives the chain training more freedom).
    # use the same num-jobs as the alignments
    steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \
      data/lang $gmm_dir $lat_dir
    rm $lat_dir/fsts.*.gz # save space
  fi
  
  if [ $stage -le 16 ]; then
    # Build a tree using our new topology.  We know we have alignments for the
    # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
    # those.
    if [ -f $tree_dir/final.mdl ]; then
      echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
      exit 1;
    fi
    steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
        --context-opts "--context-width=2 --central-position=1" \
        --cmd "$train_cmd" 4000 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir
  fi
  
  if [ $stage -le 17 ]; then
    mkdir -p $dir
  
    echo "$0: creating neural net configs using the xconfig parser";
  
    num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
    learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
    affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim-continuous=true"
    tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.66"
    linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0"
    prefinal_opts="l2-regularize=0.008"
    output_opts="l2-regularize=0.002"
  
    mkdir -p $dir/configs
    cat <<EOF > $dir/configs/network.xconfig
    input dim=100 name=ivector
    input dim=40 name=input
  
    # please note that it is important to have input layer with the name=input
    # as the layer immediately preceding the fixed-affine-layer to enable
    # the use of short notation for the descriptor
    fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
  
    # the first splicing is moved before the lda layer, so no splicing here
    relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1024
    tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
    tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
    tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
    tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0
    tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
    linear-component name=prefinal-l dim=256 $linear_opts
  
    prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
    output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
  
    prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
    output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
  EOF
    steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
  
  fi
  
  if [ $stage -le 18 ]; then
    if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
      utils/create_split_dir.pl \
       /export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
    fi
  
   steps/nnet3/chain/train.py --stage $train_stage \
      --cmd "$decode_cmd" \
      --feat.online-ivector-dir $train_ivector_dir \
      --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
      --chain.xent-regularize $xent_regularize \
      --chain.leaky-hmm-coefficient 0.1 \
      --chain.l2-regularize 0.0 \
      --chain.apply-deriv-weights false \
      --chain.lm-opts="--num-extra-lm-states=2000" \
      --trainer.dropout-schedule $dropout_schedule \
      --trainer.add-option="--optimization.memory-compression-level=2" \
      --egs.dir "$common_egs_dir" \
      --egs.opts "--frames-overlap-per-eg 0 --constrained false" \
      --egs.chunk-width 150,110,100 \
      --trainer.num-chunk-per-minibatch 64 \
      --trainer.frames-per-iter 5000000 \
      --trainer.num-epochs 6 \
      --trainer.optimization.num-jobs-initial 3 \
      --trainer.optimization.num-jobs-final 12 \
      --trainer.optimization.initial-effective-lrate 0.00025 \
      --trainer.optimization.final-effective-lrate 0.000025 \
      --trainer.max-param-change 2.0 \
      --cleanup.remove-egs $remove_egs \
      --feat-dir $train_data_dir \
      --tree-dir $tree_dir \
      --lat-dir $lat_dir \
      --dir $dir
  fi
  
  
  
  if [ $stage -le 19 ]; then
    # Note: it might appear that this data/lang_chain directory is mismatched, and it is as
    # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
    # the lang directory.
    utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
  fi
  
  if [ $stage -le 20 ]; then
    rm $dir/.error 2>/dev/null || true
    for dset in dev test; do
        (
        steps/nnet3/decode.sh --num-threads 4 --nj $decode_nj --cmd "$decode_cmd" \
            --acwt 1.0 --post-decode-acwt 10.0 \
            --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \
            --scoring-opts "--min-lmwt 5 " \
           $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1;
        steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
          data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1
      ) || touch $dir/.error &
    done
    wait
    if [ -f $dir/.error ]; then
      echo "$0: something went wrong in decoding"
      exit 1
    fi
  fi
  exit 0