Blame view
egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1g.sh
10.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#!/bin/bash # 1g is as 1f but moving to a factorized TDNN (TDNN-F) model, re-tuning it, and # switching to unconstrained egs (the last of which gives around 0.1% # improvement). (Note: I don't believe the Tedlium TDNN models were, # previously, very well-tuned). # local/chain/compare_wer_general.sh exp/chain_cleaned/tdnn1f_sp_bi exp/chain_cleaned/tdnn1g_sp # System tdnn1f_sp_bi tdnn1g_sp # WER on dev(orig) 8.9 7.9 # WER on dev(rescored) 8.1 7.3 # WER on test(orig) 9.1 8.0 # WER on test(rescored) 8.6 7.6 # Final train prob -0.1026 -0.0637 # Final valid prob -0.1031 -0.0750 # Final train prob (xent) -1.4370 -0.9792 # Final valid prob (xent) -1.4670 -0.9951 # Num-params 6994800 9431072 # steps/info/chain_dir_info.pl exp/chain_cleaned/tdnn1g_sp # exp/chain_cleaned/tdnn1g_sp: num-iters=108 nj=3..12 num-params=9.4M dim=40+100->3600 combine=-0.060->-0.060 (over 2) xent:train/valid[71,107,final]=(-1.30,-0.985,-0.979/-1.29,-1.00,-0.995) logprob:train/valid[71,107,final]=(-0.098,-0.065,-0.064/-0.100,-0.075,-0.075) ## how you run this (note: this assumes that the run_tdnn.sh soft link points here; ## otherwise call it directly in its location). # by default, with cleanup: # local/chain/run_tdnn.sh # without cleanup: # local/chain/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix "" & set -e -o pipefail # First the options that are passed through to run_ivector_common.sh # (some of which are also used in this script directly). stage=0 nj=30 decode_nj=30 min_seg_len=1.55 xent_regularize=0.1 dropout_schedule='0,0@0.20,0.5@0.50,0' train_set=train_cleaned gmm=tri3_cleaned # the gmm for the target data num_threads_ubm=32 nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned # The rest are configs specific to this script. Most of the parameters # are just hardcoded at this level, in the commands below. train_stage=-10 tree_affix= # affix for tree directory, e.g. "a" or "b", in case we change the configuration. tdnn_affix=1g #affix for TDNN directory, e.g. "a" or "b", in case we change the configuration. common_egs_dir= # you can set this to use previously dumped egs. remove_egs=true # End configuration section. echo "$0 $@" # Print the command line for logging . ./cmd.sh . ./path.sh . ./utils/parse_options.sh if ! cuda-compiled; then cat <<EOF && exit 1 This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA If you want to use GPUs (and have them), go to src/, and configure and make on a machine where "nvcc" is installed. EOF fi local/nnet3/run_ivector_common.sh --stage $stage \ --nj $nj \ --min-seg-len $min_seg_len \ --train-set $train_set \ --gmm $gmm \ --num-threads-ubm $num_threads_ubm \ --nnet3-affix "$nnet3_affix" gmm_dir=exp/$gmm ali_dir=exp/${gmm}_ali_${train_set}_sp_comb tree_dir=exp/chain${nnet3_affix}/tree_bi${tree_affix} lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats dir=exp/chain${nnet3_affix}/tdnn${tdnn_affix}_sp_bi train_data_dir=data/${train_set}_sp_hires_comb lores_train_data_dir=data/${train_set}_sp_comb train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ $lores_train_data_dir/feats.scp $ali_dir/ali.1.gz $gmm_dir/final.mdl; do [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 done if [ $stage -le 14 ]; then echo "$0: creating lang directory with one state per phone." # Create a version of the lang/ directory that has one state per phone in the # topo file. [note, it really has two states.. the first one is only repeated # once, the second one has zero or more repeats.] if [ -d data/lang_chain ]; then if [ data/lang_chain/L.fst -nt data/lang/L.fst ]; then echo "$0: data/lang_chain already exists, not overwriting it; continuing" else echo "$0: data/lang_chain already exists and seems to be older than data/lang..." echo " ... not sure what to do. Exiting." exit 1; fi else cp -r data/lang data/lang_chain silphonelist=$(cat data/lang_chain/phones/silence.csl) || exit 1; nonsilphonelist=$(cat data/lang_chain/phones/nonsilence.csl) || exit 1; # Use our special topology... note that later on may have to tune this # topology. steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >data/lang_chain/topo fi fi if [ $stage -le 15 ]; then # Get the alignments as lattices (gives the chain training more freedom). # use the same num-jobs as the alignments steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \ data/lang $gmm_dir $lat_dir rm $lat_dir/fsts.*.gz # save space fi if [ $stage -le 16 ]; then # Build a tree using our new topology. We know we have alignments for the # speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use # those. if [ -f $tree_dir/final.mdl ]; then echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." exit 1; fi steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ --context-opts "--context-width=2 --central-position=1" \ --cmd "$train_cmd" 4000 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir fi if [ $stage -le 17 ]; then mkdir -p $dir echo "$0: creating neural net configs using the xconfig parser"; num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python) affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim-continuous=true" tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.66" linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0" prefinal_opts="l2-regularize=0.008" output_opts="l2-regularize=0.002" mkdir -p $dir/configs cat <<EOF > $dir/configs/network.xconfig input dim=100 name=ivector input dim=40 name=input # please note that it is important to have input layer with the name=input # as the layer immediately preceding the fixed-affine-layer to enable # the use of short notation for the descriptor fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat # the first splicing is moved before the lda layer, so no splicing here relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1024 tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0 tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 linear-component name=prefinal-l dim=256 $linear_opts prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256 output-layer name=output include-log-softmax=false dim=$num_targets $output_opts prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256 output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts EOF steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ fi if [ $stage -le 18 ]; then if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then utils/create_split_dir.pl \ /export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage fi steps/nnet3/chain/train.py --stage $train_stage \ --cmd "$decode_cmd" \ --feat.online-ivector-dir $train_ivector_dir \ --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ --chain.xent-regularize $xent_regularize \ --chain.leaky-hmm-coefficient 0.1 \ --chain.l2-regularize 0.0 \ --chain.apply-deriv-weights false \ --chain.lm-opts="--num-extra-lm-states=2000" \ --trainer.dropout-schedule $dropout_schedule \ --trainer.add-option="--optimization.memory-compression-level=2" \ --egs.dir "$common_egs_dir" \ --egs.opts "--frames-overlap-per-eg 0 --constrained false" \ --egs.chunk-width 150,110,100 \ --trainer.num-chunk-per-minibatch 64 \ --trainer.frames-per-iter 5000000 \ --trainer.num-epochs 6 \ --trainer.optimization.num-jobs-initial 3 \ --trainer.optimization.num-jobs-final 12 \ --trainer.optimization.initial-effective-lrate 0.00025 \ --trainer.optimization.final-effective-lrate 0.000025 \ --trainer.max-param-change 2.0 \ --cleanup.remove-egs $remove_egs \ --feat-dir $train_data_dir \ --tree-dir $tree_dir \ --lat-dir $lat_dir \ --dir $dir fi if [ $stage -le 19 ]; then # Note: it might appear that this data/lang_chain directory is mismatched, and it is as # far as the 'topo' is concerned, but this script doesn't read the 'topo' from # the lang directory. utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph fi if [ $stage -le 20 ]; then rm $dir/.error 2>/dev/null || true for dset in dev test; do ( steps/nnet3/decode.sh --num-threads 4 --nj $decode_nj --cmd "$decode_cmd" \ --acwt 1.0 --post-decode-acwt 10.0 \ --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ --scoring-opts "--min-lmwt 5 " \ $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \ data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1 ) || touch $dir/.error & done wait if [ -f $dir/.error ]; then echo "$0: something went wrong in decoding" exit 1 fi fi exit 0 |