run_tdnn_1g.sh
10.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/bin/bash
# 1g is as 1f but moving to a factorized TDNN (TDNN-F) model, re-tuning it, and
# switching to unconstrained egs (the last of which gives around 0.1%
# improvement). (Note: I don't believe the Tedlium TDNN models were,
# previously, very well-tuned).
# local/chain/compare_wer_general.sh exp/chain_cleaned/tdnn1f_sp_bi exp/chain_cleaned/tdnn1g_sp
# System tdnn1f_sp_bi tdnn1g_sp
# WER on dev(orig) 8.9 7.9
# WER on dev(rescored) 8.1 7.3
# WER on test(orig) 9.1 8.0
# WER on test(rescored) 8.6 7.6
# Final train prob -0.1026 -0.0637
# Final valid prob -0.1031 -0.0750
# Final train prob (xent) -1.4370 -0.9792
# Final valid prob (xent) -1.4670 -0.9951
# Num-params 6994800 9431072
# steps/info/chain_dir_info.pl exp/chain_cleaned/tdnn1g_sp
# exp/chain_cleaned/tdnn1g_sp: num-iters=108 nj=3..12 num-params=9.4M dim=40+100->3600 combine=-0.060->-0.060 (over 2) xent:train/valid[71,107,final]=(-1.30,-0.985,-0.979/-1.29,-1.00,-0.995) logprob:train/valid[71,107,final]=(-0.098,-0.065,-0.064/-0.100,-0.075,-0.075)
## how you run this (note: this assumes that the run_tdnn.sh soft link points here;
## otherwise call it directly in its location).
# by default, with cleanup:
# local/chain/run_tdnn.sh
# without cleanup:
# local/chain/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix "" &
set -e -o pipefail
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
nj=30
decode_nj=30
min_seg_len=1.55
xent_regularize=0.1
dropout_schedule='0,0@0.20,0.5@0.50,0'
train_set=train_cleaned
gmm=tri3_cleaned # the gmm for the target data
num_threads_ubm=32
nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned
# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
train_stage=-10
tree_affix= # affix for tree directory, e.g. "a" or "b", in case we change the configuration.
tdnn_affix=1g #affix for TDNN directory, e.g. "a" or "b", in case we change the configuration.
common_egs_dir= # you can set this to use previously dumped egs.
remove_egs=true
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
local/nnet3/run_ivector_common.sh --stage $stage \
--nj $nj \
--min-seg-len $min_seg_len \
--train-set $train_set \
--gmm $gmm \
--num-threads-ubm $num_threads_ubm \
--nnet3-affix "$nnet3_affix"
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
tree_dir=exp/chain${nnet3_affix}/tree_bi${tree_affix}
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats
dir=exp/chain${nnet3_affix}/tdnn${tdnn_affix}_sp_bi
train_data_dir=data/${train_set}_sp_hires_comb
lores_train_data_dir=data/${train_set}_sp_comb
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
if [ $stage -le 14 ]; then
echo "$0: creating lang directory with one state per phone."
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d data/lang_chain ]; then
if [ data/lang_chain/L.fst -nt data/lang/L.fst ]; then
echo "$0: data/lang_chain already exists, not overwriting it; continuing"
else
echo "$0: data/lang_chain already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang data/lang_chain
silphonelist=$(cat data/lang_chain/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat data/lang_chain/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >data/lang_chain/topo
fi
fi
if [ $stage -le 15 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \
data/lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi
if [ $stage -le 16 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 4000 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir
fi
if [ $stage -le 17 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
affine_opts="l2-regularize=0.008 dropout-proportion=0.0 dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.008 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.008 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.008"
output_opts="l2-regularize=0.002"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $affine_opts dim=1024
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
linear-component name=prefinal-l dim=256 $linear_opts
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=256
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 18 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.add-option="--optimization.memory-compression-level=2" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0 --constrained false" \
--egs.chunk-width 150,110,100 \
--trainer.num-chunk-per-minibatch 64 \
--trainer.frames-per-iter 5000000 \
--trainer.num-epochs 6 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 12 \
--trainer.optimization.initial-effective-lrate 0.00025 \
--trainer.optimization.final-effective-lrate 0.000025 \
--trainer.max-param-change 2.0 \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir
fi
if [ $stage -le 19 ]; then
# Note: it might appear that this data/lang_chain directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
fi
if [ $stage -le 20 ]; then
rm $dir/.error 2>/dev/null || true
for dset in dev test; do
(
steps/nnet3/decode.sh --num-threads 4 --nj $decode_nj --cmd "$decode_cmd" \
--acwt 1.0 --post-decode-acwt 10.0 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \
--scoring-opts "--min-lmwt 5 " \
$dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1;
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" data/lang data/lang_rescore \
data/${dset}_hires ${dir}/decode_${dset} ${dir}/decode_${dset}_rescore || exit 1
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi
exit 0