Blame view

scripts/rnnlm/choose_features.py 15.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
  #!/usr/bin/env python3
  
  # Copyright  2017  Jian Wang
  # License: Apache 2.0.
  
  import os
  import argparse
  import sys
  import math
  from collections import defaultdict
  sys.stdout = open(1, 'w', encoding='utf-8', closefd=False)
  
  import re
  
  
  parser = argparse.ArgumentParser(description="This script chooses the sparse feature representation of words. "
                                               "To be more specific, it chooses the set of features-- you compute "
                                               "them for the specific words by calling rnnlm/get_word_features.py.",
                                   epilog="E.g. " + sys.argv[0] + " --unigram-probs=exp/rnnlm/unigram_probs.txt "
                                          "--unigram-scale=0.1 "
                                          "data/rnnlm/vocab/words.txt > exp/rnnlm/features.txt",
                                   formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  
  parser.add_argument("--unigram-probs", type=str, default='', required=True,
                      help="Specify the file containing unigram probs.")
  parser.add_argument("--min-ngram-order", type=int, default=2,
                      help="minimum length of n-grams of characters to"
                           "make potential features.")
  parser.add_argument("--max-ngram-order", type=int, default=3,
                      help="maximum length of n-grams of characters to"
                           "make potential features.")
  parser.add_argument("--min-frequency", type=float, default=1.0e-05,
                      help="minimum frequency with which an n-gram character "
                           "feature is encountered (counted as binary presence in a word times unigram "
                           "probs of words), for it to be used as a feature. e.g. "
                           "if less than 1.0e-06 of tokens contain the n-gram 'xyz', "
                           "then it wouldn't be used as a feature.")
  parser.add_argument("--include-unigram-feature", type=str, default='true',
                      choices=['true', 'false'],
                      help="If true, the unigram frequency of a word is "
                           "one of the features.  [note: one reason we "
                           "want to include this, is to make it easier to "
                           "port models to new vocabularies and domains].")
  parser.add_argument("--include-length-feature", type=str, default='true',
                      choices=['true', 'false'],
                      help="If true, the length in characters of a word is one of the features.")
  parser.add_argument("--top-word-features", type=int, default=2000,
                      help="The most frequent n words each get their own "
                           "special feature, in addition to any other features "
                           "that the word may naturally get.")
  parser.add_argument("--special-words", type=str, default='<s>,</s>,<brk>',
                      help="List of special words that get their own special "
                           "features and do not get any other features.")
  parser.add_argument("--use-constant-feature", type=str, default="false",
                      help="If set to true, we give a constant feature to all "
                      "words (to help model offsets).  The value will equal "
                      "the --max-feature-rms option.");
  parser.add_argument("--max-feature-rms", type=float, default=0.01,
                      help="maximum allowed root-mean-square value for any feature.")
  
  # dir=exp/rnnlm_tdnn_d
  # paste <(awk '{print $2}' $dir/config/unigram_probs.txt) <(awk '{$1="";print;}' $dir/word_feats.txt ) | awk '{freq=$1; num_feats=(NF-1)/2; for (n=1;n<=num_feats;n++) { a=n*2; b=n*2+1; rms[$a] += freq * $b*$b; }} END{for(k in rms) { print k, rms[k];}}' | sort -k2 -nr | head
  # 7180 9.99985e-05
  # 7019 9.99947e-05
  # ..
  
  parser.add_argument("vocab_file",
                      help="Path for vocab file")
  
  args = parser.parse_args()
  
  if args.use_constant_feature != "false" and args.use_constant_feature != "true":
      sys.exit(sys.argv[0] + ": --use-constant-feature must be true or false: {0}".format(
          args.use_constant_feature))
  if args.min_ngram_order < 1:
      sys.exit(sys.argv[0] + ": --min-ngram-order must be at least 1.")
  if args.max_ngram_order < args.min_ngram_order:
      sys.exit(sys.argv[0] + ": --max-ngram-order must be larger than or equal to --min-ngram-order.")
  
  SPECIAL_SYMBOLS = ["<eps>", "<s>", "<brk>"]
  
  
  # read the vocabulay file
  # Returns a pair (vocab, wordlist)
  # where 'vocab' is a dict mapping the string-valued word to a integer id.
  #  and 'wordlist' is a list indexed by integer id, that returns the string-valued word.
  def read_vocab(vocab_file):
      vocab = {}
      with open(vocab_file, 'r', encoding="utf-8") as f:
          for line in f:
              fields = line.split()
              assert len(fields) == 2
              if fields[0] in vocab:
                  sys.exit(sys.argv[0] + ": duplicated word({0}) in vocab: {1}"
                                         .format(fields[0], vocab_file))
              vocab[fields[0]] = int(fields[1])
  
      # check there is no duplication and no gap among word ids
      sorted_ids = sorted(vocab.values())
      for idx, id in enumerate(sorted_ids):
          assert idx == id
  
      vocab_size = 1 + max(vocab.values())
      wordlist = [ None] * vocab_size
      for word, index in vocab.items():
          assert wordlist[index] is None
          wordlist[index] = word
  
      if wordlist[0] != '<eps>' and wordlist[0] != '<EPS>':
          sys.exit(sys.argv[0] + ": expected word numbered zero to be epsilon.")
      return (vocab, wordlist)
  
  
  # read the unigram probs; returns a list indexed by integer
  # id of the word, which evaluates to the unigram prob of the word.
  def read_unigram_probs(unigram_probs_file):
      unigram_probs = []
      with open(unigram_probs_file, 'r', encoding="utf-8") as f:
          for line in f:
              fields = line.split()
              assert len(fields) == 2
              idx = int(fields[0])
              if idx >= len(unigram_probs):
                  unigram_probs.extend([None] * (idx - len(unigram_probs) + 1))
              unigram_probs[idx] = float(fields[1])
  
      for prob in unigram_probs:
          assert prob is not None
  
      return unigram_probs
  
  def get_feature_scale(rms):
      if rms > args.max_feature_rms:
          return '%.2g' % (args.max_feature_rms / rms)
      else:
          return "1.0"
  
  (vocab, wordlist) = read_vocab(args.vocab_file)
  unigram_probs = read_unigram_probs(args.unigram_probs)
  assert len(unigram_probs) == len(wordlist)
  
  # num_features is a counter used to keep track of how many features
  # we've created so far.
  num_features = 0
  
  # The constant feature; this will be a line of the form
  # <feature-index> constant feature-value
  # e.g.
  # constant 0.01
  # which means every single word gets this feature.  It is used to
  # handle offsets of the words' log-likelihoods, so we don't have
  # to include an offset term in the math.
  if args.use_constant_feature == "true":
      print("{0}\tconstant\t{1}".format(num_features,
                                        args.max_feature_rms))
      num_features += 1
  
  
  # 'word_indexes_to_exclude' will contain the integer indexes of words that are
  # in 'args.special_words' plus the zero word (epsilon) and which don't take part
  # in later-numbered features.
  word_indexes_to_exclude = {0} # a set including only zero.
  
  # Features for 'special' words, i.e. a line of the form
  # <feature-index> special <word> <feature-value>
  # e.g.:
  # 2 special </s> 1.0
  # These words get just the constant feature (if present) and their own 'special'
  # feature, but not letter-based features, because things like '<s>' are
  # special symbols that are not treated as regular words.
  if args.special_words != '':
      for word in args.special_words.split(','):
          if not word in vocab:
              sys.exit(sys.argv[0] + ": error: element {0} of --special-words option "
                       "is not in the vocabulary file {1}".format(word, args.vocab_file))
          word_indexes_to_exclude.add(vocab[word])
          this_word_prob = unigram_probs[vocab[word]]
          rms = math.sqrt(this_word_prob)
          print("{0}\tspecial\t{1}\t{2}".format(num_features, word,
                                                get_feature_scale(rms)))
          num_features += 1
  
  
  # Print a line for the unigram feature (this is a feature that's a scaled,
  # offset version of the log-unigram-prob of the word).  The line is of the form:
  # <feature-index> unigram <offset> <scale>
  # e.g.
  # 3 unigram 0.04631 0.024312
  # where the interpretation is that if a word w has unigram probability p(w), the
  # feature's value will equal <offset> + <scale> * log(p(w)).
  
  # The offset and scale are chosen so that the expected value of the feature
  # is zero and its rms value equals args.max_feature_rms.
  if args.include_unigram_feature == 'true':
      total_p = 0.0  # total probability of words that have the unigram feature,
                     # i.e. excluding words with the 'special' feature.
      total_x = 0.0
      total_x2 = 0.0
      for idx, p in enumerate(unigram_probs):
          if p > 0.0 and idx not in word_indexes_to_exclude:
              # 'feature_value' is the value of the log-unigram-prob feature
              # before the offset and scale are accounted for.  We accumulate
              # the expected x and x^2 stats of this.
              feature_value = math.log(p)
              total_p += p
              total_x += p * feature_value
              total_x2 += p * feature_value * feature_value
      # we won't allow all the words to be 'special' words.
      # total_p is the probability mass of non-special words.
      assert total_p > 0 and total_p < 1.01
      mean = total_x / total_p
      variance = (total_x2 / total_p - mean * mean)
      # The following assert is because training an RNNLM with only one
      # 'non-special' word and the unigram feature (or using the unigram feature
      # where all unigram probs are the same) does not make sense.
      assert variance > 0
      # The mean is computed over those words where the feature was present..
      # 'stddev' is computed over all words, even when the feature was not present
      # (that's what the factor of 'total_p' is about); this is consistent with
      # how we apply the args.max_feature_rms option in general.
      stddev = math.sqrt(total_p * variance)
      scale = min(args.max_feature_rms / stddev, 1.0)
      offset = -mean * scale
      print("{0}\tunigram\t{1}\t{2}".format(num_features, offset, scale))
      num_features += 1
  
  # length feature.  This feature is the length of the word, scaled
  # down so that the rms does not exceed args.max_feature_rms.
  # The format of the line is:
  # <feature-index> length <scale>
  # e.g.:
  # 4 length 0.00518
  if args.include_length_feature == 'true':
      feature_sumsq = 0.0
      for word_index, p in enumerate(unigram_probs):
          if word_index not in word_indexes_to_exclude:
              word = wordlist[word_index]
              feature_value = len(word)
              feature_sumsq += p * feature_value * feature_value
      rms = math.sqrt(feature_sumsq)
      print("{0}\tlength\t{1}".format(num_features, get_feature_scale(rms)))
      num_features += 1
  
  # top-words features.  This is a feature that we assign to the top n most
  # frequent words (e.g. the top 2000 most frequent words), *in addition* to any
  # features they may get as a result of their written form.
  # e.g. the line will look like:
  # <feature-index> word <word> <scale>
  # e.g.:
  # 6 word of 1.0
  
  # We need to remember which words are given these features to avoid printing
  # the same feature later on when we process the n-gram type features; for
  # instance, if we are including trigrams on characters, the 3-gram (BOS, a, EOS)
  # would be the word "a", and if the word "a" got its own "word" feature due to
  # the --top-word-features option, this would be a duplication.
  # 'top_words' will be a set containing words (strings) that already had their
  # own 'word' feature.
  top_words = set()
  if args.top_word_features > 0:
      # sorted_word_indexes is a sorted list of pairs (word_index, unigram_prob),
      # sorted from greatest to least unigram_prob.
      sorted_word_indexes = sorted(enumerate(unigram_probs),
                                   key=lambda x: x[1], reverse=True)
      num_top_words_printed = 0
      for word_index, unigram_prob in sorted_word_indexes:
          if word_index in word_indexes_to_exclude:
              continue
          word = wordlist[word_index]
          rms = math.sqrt(unigram_prob)
          print("{0}\tword\t{1}\t{2}".format(num_features, word, get_feature_scale(rms)))
          num_features += 1
          top_words.add(word)
          num_top_words_printed += 1
          if num_top_words_printed > args.top_word_features:
              break
  
  # n-gram features.
  # These are basically sub-strings of a word.  What we print in the feature
  # file is things like:
  #  <feat-index> (initial|final|match|word) <sub-string> <scale>
  # e.g.
  # 20 match tel 1.0
  # where: 'match' means a match at any position in the word,
  #        'final' means a match that must be word-final (and may or may
  #                not be word-initial),
  #        'initial' means a match that must be word-initial (and may or
  #                may not be word-final)
  #        'word' means a match that is both word-initial and word-final.
  # For a given word, the feature value if there is a match will be the number of
  # matches times the feature scale.
  
  #  'ngram_feats' is a dict mapping a pair (match_type, match)
  #  to a pair (feat_freq, expected_feat_sumsq), where:
  #
  #   match_type (a string) is one of: 'match', 'final', 'initial', 'word',
  #           describing the match type, as explained above.
  #   match (a string) is the string that we are matching, e.g. 'ing'.
  #   feat_freq (a float) is the  sum over all words which the feature
  #     appears in, of the probability of that word.
  #   expected_feat_sumsq (a float) is the sum over all words of the probability
  #    of that word, times the square of the number of times the feature
  #    appears there.
  
  # if you index ngram_feats with a key that wasn't present, you'll get the
  # tuple (0.0, 0.0).
  ngram_feats = defaultdict(lambda: (0.0, 0.0))
  
  for (word_index, unigram_prob) in enumerate(unigram_probs):
      if word_index in word_indexes_to_exclude:
          continue
      word = wordlist[word_index]
  
      for pos in range(len(word) + 1):  # +1 for EOW 'this_word_feats' is a dict
          # from pairs (match_type, match) as defined above, to the count of the
          # number of times the feature was matched in this word (this count can
          # only be >1 if match_type == 'match').
          this_word_feats = defaultdict(int)
  
          for order in range(args.min_ngram_order, args.max_ngram_order + 1):
              start = pos - order + 1
              end = pos + 1
  
              if start < -1:
                  continue
  
              if start < 0 and end > len(word):
                  match_type = 'word'
                  start = 0
                  end = len(word)
              elif start < 0:
                  match_type = 'initial'
                  start = 0
              elif end > len(word):
                  match_type = 'final'
                  end = len(word)
              else:
                  match_type = 'match'
              if start >= end:
                  continue
  
              match = word[start:end]
              this_word_feats[(match_type, match)] += 1
          for (match_type, match), count in this_word_feats.items():
              (feat_freq, expected_feat_sumsq) = ngram_feats[(match_type, match)]
              ngram_feats[(match_type, match)] = (feat_freq + unigram_prob,
                                                  expected_feat_sumsq + unigram_prob * count * count)
  
  
  for (match_type, match), (expected_feat_sum, expected_feat_sumsq) in sorted(ngram_feats.items()):
      if match_type == 'word' and match in top_words:
          continue  # avoid duplicate
      if expected_feat_sum < args.min_frequency:
          continue  # very infrequent features are excluded via this mechanism.
      rms = math.sqrt(expected_feat_sumsq)
      print("{0}\t{1}\t{2}\t{3}".format(
          num_features, match_type, match, get_feature_scale(rms)))
      num_features += 1
  
  
  print(sys.argv[0] + ": chose {0} features.".format(num_features), file=sys.stderr)