Blame view
scripts/rnnlm/choose_features.py
15.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
#!/usr/bin/env python3 # Copyright 2017 Jian Wang # License: Apache 2.0. import os import argparse import sys import math from collections import defaultdict sys.stdout = open(1, 'w', encoding='utf-8', closefd=False) import re parser = argparse.ArgumentParser(description="This script chooses the sparse feature representation of words. " "To be more specific, it chooses the set of features-- you compute " "them for the specific words by calling rnnlm/get_word_features.py.", epilog="E.g. " + sys.argv[0] + " --unigram-probs=exp/rnnlm/unigram_probs.txt " "--unigram-scale=0.1 " "data/rnnlm/vocab/words.txt > exp/rnnlm/features.txt", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--unigram-probs", type=str, default='', required=True, help="Specify the file containing unigram probs.") parser.add_argument("--min-ngram-order", type=int, default=2, help="minimum length of n-grams of characters to" "make potential features.") parser.add_argument("--max-ngram-order", type=int, default=3, help="maximum length of n-grams of characters to" "make potential features.") parser.add_argument("--min-frequency", type=float, default=1.0e-05, help="minimum frequency with which an n-gram character " "feature is encountered (counted as binary presence in a word times unigram " "probs of words), for it to be used as a feature. e.g. " "if less than 1.0e-06 of tokens contain the n-gram 'xyz', " "then it wouldn't be used as a feature.") parser.add_argument("--include-unigram-feature", type=str, default='true', choices=['true', 'false'], help="If true, the unigram frequency of a word is " "one of the features. [note: one reason we " "want to include this, is to make it easier to " "port models to new vocabularies and domains].") parser.add_argument("--include-length-feature", type=str, default='true', choices=['true', 'false'], help="If true, the length in characters of a word is one of the features.") parser.add_argument("--top-word-features", type=int, default=2000, help="The most frequent n words each get their own " "special feature, in addition to any other features " "that the word may naturally get.") parser.add_argument("--special-words", type=str, default='<s>,</s>,<brk>', help="List of special words that get their own special " "features and do not get any other features.") parser.add_argument("--use-constant-feature", type=str, default="false", help="If set to true, we give a constant feature to all " "words (to help model offsets). The value will equal " "the --max-feature-rms option."); parser.add_argument("--max-feature-rms", type=float, default=0.01, help="maximum allowed root-mean-square value for any feature.") # dir=exp/rnnlm_tdnn_d # paste <(awk '{print $2}' $dir/config/unigram_probs.txt) <(awk '{$1="";print;}' $dir/word_feats.txt ) | awk '{freq=$1; num_feats=(NF-1)/2; for (n=1;n<=num_feats;n++) { a=n*2; b=n*2+1; rms[$a] += freq * $b*$b; }} END{for(k in rms) { print k, rms[k];}}' | sort -k2 -nr | head # 7180 9.99985e-05 # 7019 9.99947e-05 # .. parser.add_argument("vocab_file", help="Path for vocab file") args = parser.parse_args() if args.use_constant_feature != "false" and args.use_constant_feature != "true": sys.exit(sys.argv[0] + ": --use-constant-feature must be true or false: {0}".format( args.use_constant_feature)) if args.min_ngram_order < 1: sys.exit(sys.argv[0] + ": --min-ngram-order must be at least 1.") if args.max_ngram_order < args.min_ngram_order: sys.exit(sys.argv[0] + ": --max-ngram-order must be larger than or equal to --min-ngram-order.") SPECIAL_SYMBOLS = ["<eps>", "<s>", "<brk>"] # read the vocabulay file # Returns a pair (vocab, wordlist) # where 'vocab' is a dict mapping the string-valued word to a integer id. # and 'wordlist' is a list indexed by integer id, that returns the string-valued word. def read_vocab(vocab_file): vocab = {} with open(vocab_file, 'r', encoding="utf-8") as f: for line in f: fields = line.split() assert len(fields) == 2 if fields[0] in vocab: sys.exit(sys.argv[0] + ": duplicated word({0}) in vocab: {1}" .format(fields[0], vocab_file)) vocab[fields[0]] = int(fields[1]) # check there is no duplication and no gap among word ids sorted_ids = sorted(vocab.values()) for idx, id in enumerate(sorted_ids): assert idx == id vocab_size = 1 + max(vocab.values()) wordlist = [ None] * vocab_size for word, index in vocab.items(): assert wordlist[index] is None wordlist[index] = word if wordlist[0] != '<eps>' and wordlist[0] != '<EPS>': sys.exit(sys.argv[0] + ": expected word numbered zero to be epsilon.") return (vocab, wordlist) # read the unigram probs; returns a list indexed by integer # id of the word, which evaluates to the unigram prob of the word. def read_unigram_probs(unigram_probs_file): unigram_probs = [] with open(unigram_probs_file, 'r', encoding="utf-8") as f: for line in f: fields = line.split() assert len(fields) == 2 idx = int(fields[0]) if idx >= len(unigram_probs): unigram_probs.extend([None] * (idx - len(unigram_probs) + 1)) unigram_probs[idx] = float(fields[1]) for prob in unigram_probs: assert prob is not None return unigram_probs def get_feature_scale(rms): if rms > args.max_feature_rms: return '%.2g' % (args.max_feature_rms / rms) else: return "1.0" (vocab, wordlist) = read_vocab(args.vocab_file) unigram_probs = read_unigram_probs(args.unigram_probs) assert len(unigram_probs) == len(wordlist) # num_features is a counter used to keep track of how many features # we've created so far. num_features = 0 # The constant feature; this will be a line of the form # <feature-index> constant feature-value # e.g. # constant 0.01 # which means every single word gets this feature. It is used to # handle offsets of the words' log-likelihoods, so we don't have # to include an offset term in the math. if args.use_constant_feature == "true": print("{0}\tconstant\t{1}".format(num_features, args.max_feature_rms)) num_features += 1 # 'word_indexes_to_exclude' will contain the integer indexes of words that are # in 'args.special_words' plus the zero word (epsilon) and which don't take part # in later-numbered features. word_indexes_to_exclude = {0} # a set including only zero. # Features for 'special' words, i.e. a line of the form # <feature-index> special <word> <feature-value> # e.g.: # 2 special </s> 1.0 # These words get just the constant feature (if present) and their own 'special' # feature, but not letter-based features, because things like '<s>' are # special symbols that are not treated as regular words. if args.special_words != '': for word in args.special_words.split(','): if not word in vocab: sys.exit(sys.argv[0] + ": error: element {0} of --special-words option " "is not in the vocabulary file {1}".format(word, args.vocab_file)) word_indexes_to_exclude.add(vocab[word]) this_word_prob = unigram_probs[vocab[word]] rms = math.sqrt(this_word_prob) print("{0}\tspecial\t{1}\t{2}".format(num_features, word, get_feature_scale(rms))) num_features += 1 # Print a line for the unigram feature (this is a feature that's a scaled, # offset version of the log-unigram-prob of the word). The line is of the form: # <feature-index> unigram <offset> <scale> # e.g. # 3 unigram 0.04631 0.024312 # where the interpretation is that if a word w has unigram probability p(w), the # feature's value will equal <offset> + <scale> * log(p(w)). # The offset and scale are chosen so that the expected value of the feature # is zero and its rms value equals args.max_feature_rms. if args.include_unigram_feature == 'true': total_p = 0.0 # total probability of words that have the unigram feature, # i.e. excluding words with the 'special' feature. total_x = 0.0 total_x2 = 0.0 for idx, p in enumerate(unigram_probs): if p > 0.0 and idx not in word_indexes_to_exclude: # 'feature_value' is the value of the log-unigram-prob feature # before the offset and scale are accounted for. We accumulate # the expected x and x^2 stats of this. feature_value = math.log(p) total_p += p total_x += p * feature_value total_x2 += p * feature_value * feature_value # we won't allow all the words to be 'special' words. # total_p is the probability mass of non-special words. assert total_p > 0 and total_p < 1.01 mean = total_x / total_p variance = (total_x2 / total_p - mean * mean) # The following assert is because training an RNNLM with only one # 'non-special' word and the unigram feature (or using the unigram feature # where all unigram probs are the same) does not make sense. assert variance > 0 # The mean is computed over those words where the feature was present.. # 'stddev' is computed over all words, even when the feature was not present # (that's what the factor of 'total_p' is about); this is consistent with # how we apply the args.max_feature_rms option in general. stddev = math.sqrt(total_p * variance) scale = min(args.max_feature_rms / stddev, 1.0) offset = -mean * scale print("{0}\tunigram\t{1}\t{2}".format(num_features, offset, scale)) num_features += 1 # length feature. This feature is the length of the word, scaled # down so that the rms does not exceed args.max_feature_rms. # The format of the line is: # <feature-index> length <scale> # e.g.: # 4 length 0.00518 if args.include_length_feature == 'true': feature_sumsq = 0.0 for word_index, p in enumerate(unigram_probs): if word_index not in word_indexes_to_exclude: word = wordlist[word_index] feature_value = len(word) feature_sumsq += p * feature_value * feature_value rms = math.sqrt(feature_sumsq) print("{0}\tlength\t{1}".format(num_features, get_feature_scale(rms))) num_features += 1 # top-words features. This is a feature that we assign to the top n most # frequent words (e.g. the top 2000 most frequent words), *in addition* to any # features they may get as a result of their written form. # e.g. the line will look like: # <feature-index> word <word> <scale> # e.g.: # 6 word of 1.0 # We need to remember which words are given these features to avoid printing # the same feature later on when we process the n-gram type features; for # instance, if we are including trigrams on characters, the 3-gram (BOS, a, EOS) # would be the word "a", and if the word "a" got its own "word" feature due to # the --top-word-features option, this would be a duplication. # 'top_words' will be a set containing words (strings) that already had their # own 'word' feature. top_words = set() if args.top_word_features > 0: # sorted_word_indexes is a sorted list of pairs (word_index, unigram_prob), # sorted from greatest to least unigram_prob. sorted_word_indexes = sorted(enumerate(unigram_probs), key=lambda x: x[1], reverse=True) num_top_words_printed = 0 for word_index, unigram_prob in sorted_word_indexes: if word_index in word_indexes_to_exclude: continue word = wordlist[word_index] rms = math.sqrt(unigram_prob) print("{0}\tword\t{1}\t{2}".format(num_features, word, get_feature_scale(rms))) num_features += 1 top_words.add(word) num_top_words_printed += 1 if num_top_words_printed > args.top_word_features: break # n-gram features. # These are basically sub-strings of a word. What we print in the feature # file is things like: # <feat-index> (initial|final|match|word) <sub-string> <scale> # e.g. # 20 match tel 1.0 # where: 'match' means a match at any position in the word, # 'final' means a match that must be word-final (and may or may # not be word-initial), # 'initial' means a match that must be word-initial (and may or # may not be word-final) # 'word' means a match that is both word-initial and word-final. # For a given word, the feature value if there is a match will be the number of # matches times the feature scale. # 'ngram_feats' is a dict mapping a pair (match_type, match) # to a pair (feat_freq, expected_feat_sumsq), where: # # match_type (a string) is one of: 'match', 'final', 'initial', 'word', # describing the match type, as explained above. # match (a string) is the string that we are matching, e.g. 'ing'. # feat_freq (a float) is the sum over all words which the feature # appears in, of the probability of that word. # expected_feat_sumsq (a float) is the sum over all words of the probability # of that word, times the square of the number of times the feature # appears there. # if you index ngram_feats with a key that wasn't present, you'll get the # tuple (0.0, 0.0). ngram_feats = defaultdict(lambda: (0.0, 0.0)) for (word_index, unigram_prob) in enumerate(unigram_probs): if word_index in word_indexes_to_exclude: continue word = wordlist[word_index] for pos in range(len(word) + 1): # +1 for EOW 'this_word_feats' is a dict # from pairs (match_type, match) as defined above, to the count of the # number of times the feature was matched in this word (this count can # only be >1 if match_type == 'match'). this_word_feats = defaultdict(int) for order in range(args.min_ngram_order, args.max_ngram_order + 1): start = pos - order + 1 end = pos + 1 if start < -1: continue if start < 0 and end > len(word): match_type = 'word' start = 0 end = len(word) elif start < 0: match_type = 'initial' start = 0 elif end > len(word): match_type = 'final' end = len(word) else: match_type = 'match' if start >= end: continue match = word[start:end] this_word_feats[(match_type, match)] += 1 for (match_type, match), count in this_word_feats.items(): (feat_freq, expected_feat_sumsq) = ngram_feats[(match_type, match)] ngram_feats[(match_type, match)] = (feat_freq + unigram_prob, expected_feat_sumsq + unigram_prob * count * count) for (match_type, match), (expected_feat_sum, expected_feat_sumsq) in sorted(ngram_feats.items()): if match_type == 'word' and match in top_words: continue # avoid duplicate if expected_feat_sum < args.min_frequency: continue # very infrequent features are excluded via this mechanism. rms = math.sqrt(expected_feat_sumsq) print("{0}\t{1}\t{2}\t{3}".format( num_features, match_type, match, get_feature_scale(rms))) num_features += 1 print(sys.argv[0] + ": chose {0} features.".format(num_features), file=sys.stderr) |