Blame view
src/chain/language-model.cc
15.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
// chain/language-model.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include <numeric> #include "chain/language-model.h" #include "util/simple-io-funcs.h" namespace kaldi { namespace chain { void LanguageModelEstimator::AddCounts(const std::vector<int32> &sentence) { KALDI_ASSERT(opts_.ngram_order >= 2 && "--ngram-order must be >= 2"); KALDI_ASSERT(opts_.ngram_order >= opts_.no_prune_ngram_order); int32 order = opts_.ngram_order; // 0 is used for left-context at the beginning of the file.. treat it as BOS. std::vector<int32> history(1, 0); std::vector<int32>::const_iterator iter = sentence.begin(), end = sentence.end(); for (; iter != end; ++iter) { KALDI_ASSERT(*iter != 0); IncrementCount(history, *iter); history.push_back(*iter); if (history.size() >= order) history.erase(history.begin()); } // Probability of end of sentence. This will end up getting ignored later, but // it still makes a difference for probability-normalization reasons. IncrementCount(history, 0); } void LanguageModelEstimator::IncrementCount(const std::vector<int32> &history, int32 next_phone) { int32 lm_state_index = FindOrCreateLmStateIndexForHistory(history); if (lm_states_[lm_state_index].tot_count == 0) { num_active_lm_states_++; } lm_states_[lm_state_index].AddCount(next_phone, 1); } void LanguageModelEstimator::SetParentCounts() { int32 num_lm_states = lm_states_.size(); for (int32 l = 0; l < num_lm_states; l++) { int32 this_count = lm_states_[l].tot_count; int32 l_iter = l; while (l_iter != -1) { lm_states_[l_iter].tot_count_with_parents += this_count; l_iter = lm_states_[l_iter].backoff_lmstate_index; } } for (int32 l = 0; l < num_lm_states; l++) { KALDI_ASSERT(lm_states_[l].tot_count_with_parents >= lm_states_[l].tot_count); } } int32 LanguageModelEstimator::CheckActiveStates() const { int32 num_active_states = 0, num_lm_states = lm_states_.size(), num_basic_lm_states = 0; for (int32 l = 0; l < num_lm_states; l++) { if (lm_states_[l].tot_count != 0) num_active_states++; if (lm_states_[l].history.size() == opts_.no_prune_ngram_order - 1) num_basic_lm_states++; } KALDI_ASSERT(num_active_states == num_active_lm_states_); return num_basic_lm_states; } int32 LanguageModelEstimator::FindLmStateIndexForHistory( const std::vector<int32> &hist) const { MapType::const_iterator iter = hist_to_lmstate_index_.find(hist); if (iter == hist_to_lmstate_index_.end()) return -1; else return iter->second; } int32 LanguageModelEstimator::FindNonzeroLmStateIndexForHistory( std::vector<int32> hist) const { while (1) { int32 l = FindLmStateIndexForHistory(hist); if (l == -1 || lm_states_[l].tot_count == 0) { // no such state or state has zero count. if (hist.empty()) KALDI_ERR << "Error looking up LM state index for history " << "(likely code bug)"; hist.erase(hist.begin()); // back off. } else { return l; } } } int32 LanguageModelEstimator::FindOrCreateLmStateIndexForHistory( const std::vector<int32> &hist) { MapType::const_iterator iter = hist_to_lmstate_index_.find(hist); if (iter != hist_to_lmstate_index_.end()) return iter->second; int32 ans = lm_states_.size(); // index of next element // next statement relies on default construct of LmState. lm_states_.resize(lm_states_.size() + 1); lm_states_.back().history = hist; hist_to_lmstate_index_[hist] = ans; // make sure backoff_lmstate_index is set, if needed. if (hist.size() >= opts_.no_prune_ngram_order) { // we need a backoff state to exist- create one if needed. std::vector<int32> backoff_hist(hist.begin() + 1, hist.end()); int32 backoff_lm_state = FindOrCreateLmStateIndexForHistory( backoff_hist); lm_states_[ans].backoff_lmstate_index = backoff_lm_state; } return ans; } void LanguageModelEstimator::LmState::AddCount(int32 phone, int32 count) { std::map<int32, int32>::iterator iter = phone_to_count.find(phone); if (iter == phone_to_count.end()) phone_to_count[phone] = count; else iter->second += count; tot_count += count; } void LanguageModelEstimator::LmState::Add(const LmState &other) { KALDI_ASSERT(&other != this); std::map<int32, int32>::const_iterator iter = other.phone_to_count.begin(), end = other.phone_to_count.end(); for (; iter != end; ++iter) AddCount(iter->first, iter->second); } void LanguageModelEstimator::LmState::Clear() { phone_to_count.clear(); tot_count = 0; tot_count_with_parents = false; backoff_allowed = false; } BaseFloat LanguageModelEstimator::LmState::LogLike() const { double ans = 0.0; int32 tot_count_check = 0; std::map<int32, int32>::const_iterator iter = phone_to_count.begin(), end = phone_to_count.end(); for (; iter != end; ++iter) { int32 count = iter->second; tot_count_check += count; double prob = count * 1.0 / tot_count; ans += log(prob) * count; } KALDI_ASSERT(tot_count_check == tot_count); return ans; } void LanguageModelEstimator::InitializeQueue() { int32 num_lm_states = lm_states_.size(); while (!queue_.empty()) queue_.pop(); for (int32 l = 0; l < num_lm_states; l++) { lm_states_[l].backoff_allowed = BackoffAllowed(l); if (lm_states_[l].backoff_allowed) { BaseFloat like_change = BackoffLogLikelihoodChange(l); queue_.push(std::pair<BaseFloat,int32>(like_change, l)); } } } BaseFloat LanguageModelEstimator::BackoffLogLikelihoodChange( int32 l) const { const LmState &lm_state = lm_states_.at(l); KALDI_ASSERT(lm_state.backoff_allowed && lm_state.backoff_lmstate_index >= 0); const LmState &backoff_lm_state = lm_states_.at( lm_state.backoff_lmstate_index); KALDI_ASSERT(lm_state.tot_count != 0); // if the backoff state has zero count, there would naturally be a zero // cost, but return -1e15 * (count of this lm state)... this encourages the // lowest-count state to be backed off first. if (backoff_lm_state.tot_count == 0) return -1.0e-15 * lm_state.tot_count; LmState sum_state(backoff_lm_state); sum_state.Add(lm_state); BaseFloat log_like_change = sum_state.LogLike() - lm_state.LogLike() - backoff_lm_state.LogLike(); // log-like change should not be positive... give it a margin for round-off // error. KALDI_ASSERT(log_like_change < 0.1); if (log_like_change > 0.0) log_like_change = 0.0; return log_like_change; } void LanguageModelEstimator::DoBackoff() { int32 initial_active_states = num_active_lm_states_, target_num_lm_states = num_basic_lm_states_ + opts_.num_extra_lm_states; // create 3 intermediate targets and the final target. Between each phase we'll // do InitializeQueue(), which will get us more exact values. int32 num_targets = 4; std::vector<int32> targets(num_targets); for (int32 t = 0; t < num_targets; t++) { // the targets get progressively closer to target_num_lm_states; targets[t] = initial_active_states + ((target_num_lm_states - initial_active_states) * (t + 1)) / num_targets; } KALDI_ASSERT(targets.back() == target_num_lm_states); for (int32 t = 0; t < num_targets; t++) { KALDI_VLOG(2) << "Backing off states, stage " << t; InitializeQueue(); int32 this_target = targets[t]; while (num_active_lm_states_ > this_target && !queue_.empty()) { BaseFloat like_change = queue_.top().first; int32 lm_state = queue_.top().second; queue_.pop(); BaseFloat recomputed_like_change = BackoffLogLikelihoodChange(lm_state); if (!ApproxEqual(like_change, recomputed_like_change)) { // If it changed (i.e. we had a stale likelihood-change on the queue), // just put back the recomputed like-change on the queue and make no other // changes. KALDI_VLOG(2) << "Not backing off state, since like-change changed from " << like_change << " to " << recomputed_like_change; queue_.push(std::pair<BaseFloat,int32>(recomputed_like_change, lm_state)); } else { KALDI_VLOG(2) << "Backing off state with like-change = " << recomputed_like_change; BackOffState(lm_state); } } } KALDI_LOG << "In LM [hard] backoff, target num states was " << num_basic_lm_states_ << " + --num-extra-lm-states=" << opts_.num_extra_lm_states << " = " << target_num_lm_states << ", pruned from " << initial_active_states << " to " << num_active_lm_states_; } void LanguageModelEstimator::BackOffState(int32 l) { LmState &lm_state = lm_states_.at(l); KALDI_ASSERT(lm_state.backoff_allowed); KALDI_ASSERT(lm_state.backoff_lmstate_index >= 0); KALDI_ASSERT(lm_state.tot_count > 0); // or shouldn't be backing it off. LmState &backoff_lm_state = lm_states_.at(lm_state.backoff_lmstate_index); bool backoff_state_had_backoff_allowed = backoff_lm_state.backoff_allowed; if (backoff_lm_state.tot_count != 0) num_active_lm_states_--; // add the counts of lm_state to backoff_lm_state. backoff_lm_state.Add(lm_state); // zero the counts in this lm_state. lm_state.Clear(); backoff_lm_state.backoff_allowed = BackoffAllowed( lm_state.backoff_lmstate_index); if (!backoff_state_had_backoff_allowed && backoff_lm_state.backoff_allowed) { // the backoff state would not have been in the queue, but is now allowed in // the queue. BaseFloat backoff_like_change = BackoffLogLikelihoodChange( lm_state.backoff_lmstate_index); queue_.push(std::pair<BaseFloat,int32>(backoff_like_change, lm_state.backoff_lmstate_index)); } } int32 LanguageModelEstimator::AssignFstStates() { CheckActiveStates(); int32 num_lm_states = lm_states_.size(); int32 current_fst_state = 0; for (int32 l = 0; l < num_lm_states; l++) if (lm_states_[l].tot_count != 0) lm_states_[l].fst_state = current_fst_state++; KALDI_ASSERT(current_fst_state == num_active_lm_states_); return current_fst_state; } void LanguageModelEstimator::Estimate(fst::StdVectorFst *fst) { KALDI_LOG << "Estimating language model with --no-prune-ngram-order=" << opts_.no_prune_ngram_order << ", --ngram-order=" << opts_.ngram_order << ", --num-extra-lm-states=" << opts_.num_extra_lm_states; SetParentCounts(); num_basic_lm_states_ = CheckActiveStates(); DoBackoff(); int32 num_fst_states = AssignFstStates(); OutputToFst(num_fst_states, fst); } int32 LanguageModelEstimator::FindInitialFstState() const { std::vector<int32> history(1, 0); int32 l = FindNonzeroLmStateIndexForHistory(history); KALDI_ASSERT(l != -1 && lm_states_[l].fst_state != -1); return lm_states_[l].fst_state; } bool LanguageModelEstimator::BackoffAllowed(int32 l) const { const LmState &lm_state = lm_states_.at(l); if (lm_state.history.size() < opts_.no_prune_ngram_order) return false; KALDI_ASSERT(lm_state.tot_count <= lm_state.tot_count_with_parents); if (lm_state.tot_count != lm_state.tot_count_with_parents) return false; if (lm_state.tot_count == 0) return false; // the next if-statement is an optimization where we skip the // following test if we know that it must always be true. if (lm_state.history.size() == opts_.ngram_order - 1) return true; std::map<int32, int32>::const_iterator iter = lm_state.phone_to_count.begin(), end = lm_state.phone_to_count.end(); for (; iter != end; ++iter) { int32 phone = iter->first; if (phone != 0) { std::vector<int32> next_hist(lm_state.history); next_hist.push_back(phone); int32 next_lmstate = FindLmStateIndexForHistory(next_hist); if (next_lmstate != -1 && lm_states_[next_lmstate].tot_count_with_parents != 0) { // backoff is not allowed because we need all the context we have // in order to make this transition; we can't afford to discard // the leftmost phone. return false; } } } return true; } void LanguageModelEstimator::OutputToFst( int32 num_states, fst::StdVectorFst *fst) const { KALDI_ASSERT(num_states == num_active_lm_states_); fst->DeleteStates(); for (int32 i = 0; i < num_states; i++) fst->AddState(); fst->SetStart(FindInitialFstState()); int64 tot_count = 0; double tot_logprob = 0.0; int32 num_lm_states = lm_states_.size(); // note: not all lm-states end up being 'active'. for (int32 l = 0; l < num_lm_states; l++) { const LmState &lm_state = lm_states_[l]; if (lm_state.fst_state == -1) continue; int32 state_count = lm_state.tot_count; KALDI_ASSERT(state_count != 0); std::map<int32, int32>::const_iterator iter = lm_state.phone_to_count.begin(), end = lm_state.phone_to_count.end(); for (; iter != end; ++iter) { int32 phone = iter->first, count = iter->second; BaseFloat logprob = log(count * 1.0 / state_count); tot_count += count; tot_logprob += logprob * count; if (phone == 0) { // Interpret as final-prob. fst->SetFinal(lm_state.fst_state, fst::TropicalWeight(-logprob)); } else { // It becomes a transition. std::vector<int32> next_history(lm_state.history); next_history.push_back(phone); int32 dest_lm_state = FindNonzeroLmStateIndexForHistory(next_history), dest_fst_state = lm_states_[dest_lm_state].fst_state; KALDI_ASSERT(dest_fst_state != -1); fst->AddArc(lm_state.fst_state, fst::StdArc(phone, phone, fst::TropicalWeight(-logprob), dest_fst_state)); } } } BaseFloat perplexity = exp(-(tot_logprob / tot_count)); KALDI_LOG << "Total number of phone instances seen was " << tot_count; KALDI_LOG << "Perplexity on training data is: " << perplexity; KALDI_LOG << "Note: perplexity on unseen data will be infinity as there is " << "no smoothing. This is by design, to reduce the number of arcs."; fst::Connect(fst); // Make sure that Connect does not delete any states. int32 num_states_connected = fst->NumStates(); KALDI_ASSERT(num_states_connected == num_states); // arc-sort. ilabel or olabel doesn't matter, it's an acceptor. fst::ArcSort(fst, fst::ILabelCompare<fst::StdArc>()); KALDI_LOG << "Created phone language model with " << num_states << " states and " << fst::NumArcs(*fst) << " arcs."; } } // namespace chain } // namespace kaldi |