language-model.cc
15.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// chain/language-model.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <numeric>
#include "chain/language-model.h"
#include "util/simple-io-funcs.h"
namespace kaldi {
namespace chain {
void LanguageModelEstimator::AddCounts(const std::vector<int32> &sentence) {
KALDI_ASSERT(opts_.ngram_order >= 2 && "--ngram-order must be >= 2");
KALDI_ASSERT(opts_.ngram_order >= opts_.no_prune_ngram_order);
int32 order = opts_.ngram_order;
// 0 is used for left-context at the beginning of the file.. treat it as BOS.
std::vector<int32> history(1, 0);
std::vector<int32>::const_iterator iter = sentence.begin(),
end = sentence.end();
for (; iter != end; ++iter) {
KALDI_ASSERT(*iter != 0);
IncrementCount(history, *iter);
history.push_back(*iter);
if (history.size() >= order)
history.erase(history.begin());
}
// Probability of end of sentence. This will end up getting ignored later, but
// it still makes a difference for probability-normalization reasons.
IncrementCount(history, 0);
}
void LanguageModelEstimator::IncrementCount(const std::vector<int32> &history,
int32 next_phone) {
int32 lm_state_index = FindOrCreateLmStateIndexForHistory(history);
if (lm_states_[lm_state_index].tot_count == 0) {
num_active_lm_states_++;
}
lm_states_[lm_state_index].AddCount(next_phone, 1);
}
void LanguageModelEstimator::SetParentCounts() {
int32 num_lm_states = lm_states_.size();
for (int32 l = 0; l < num_lm_states; l++) {
int32 this_count = lm_states_[l].tot_count;
int32 l_iter = l;
while (l_iter != -1) {
lm_states_[l_iter].tot_count_with_parents += this_count;
l_iter = lm_states_[l_iter].backoff_lmstate_index;
}
}
for (int32 l = 0; l < num_lm_states; l++) {
KALDI_ASSERT(lm_states_[l].tot_count_with_parents >=
lm_states_[l].tot_count);
}
}
int32 LanguageModelEstimator::CheckActiveStates() const {
int32 num_active_states = 0,
num_lm_states = lm_states_.size(),
num_basic_lm_states = 0;
for (int32 l = 0; l < num_lm_states; l++) {
if (lm_states_[l].tot_count != 0)
num_active_states++;
if (lm_states_[l].history.size() == opts_.no_prune_ngram_order - 1)
num_basic_lm_states++;
}
KALDI_ASSERT(num_active_states == num_active_lm_states_);
return num_basic_lm_states;
}
int32 LanguageModelEstimator::FindLmStateIndexForHistory(
const std::vector<int32> &hist) const {
MapType::const_iterator iter = hist_to_lmstate_index_.find(hist);
if (iter == hist_to_lmstate_index_.end())
return -1;
else
return iter->second;
}
int32 LanguageModelEstimator::FindNonzeroLmStateIndexForHistory(
std::vector<int32> hist) const {
while (1) {
int32 l = FindLmStateIndexForHistory(hist);
if (l == -1 || lm_states_[l].tot_count == 0) {
// no such state or state has zero count.
if (hist.empty())
KALDI_ERR << "Error looking up LM state index for history "
<< "(likely code bug)";
hist.erase(hist.begin()); // back off.
} else {
return l;
}
}
}
int32 LanguageModelEstimator::FindOrCreateLmStateIndexForHistory(
const std::vector<int32> &hist) {
MapType::const_iterator iter = hist_to_lmstate_index_.find(hist);
if (iter != hist_to_lmstate_index_.end())
return iter->second;
int32 ans = lm_states_.size(); // index of next element
// next statement relies on default construct of LmState.
lm_states_.resize(lm_states_.size() + 1);
lm_states_.back().history = hist;
hist_to_lmstate_index_[hist] = ans;
// make sure backoff_lmstate_index is set, if needed.
if (hist.size() >= opts_.no_prune_ngram_order) {
// we need a backoff state to exist- create one if needed.
std::vector<int32> backoff_hist(hist.begin() + 1,
hist.end());
int32 backoff_lm_state = FindOrCreateLmStateIndexForHistory(
backoff_hist);
lm_states_[ans].backoff_lmstate_index = backoff_lm_state;
}
return ans;
}
void LanguageModelEstimator::LmState::AddCount(int32 phone, int32 count) {
std::map<int32, int32>::iterator iter = phone_to_count.find(phone);
if (iter == phone_to_count.end())
phone_to_count[phone] = count;
else
iter->second += count;
tot_count += count;
}
void LanguageModelEstimator::LmState::Add(const LmState &other) {
KALDI_ASSERT(&other != this);
std::map<int32, int32>::const_iterator iter = other.phone_to_count.begin(),
end = other.phone_to_count.end();
for (; iter != end; ++iter)
AddCount(iter->first, iter->second);
}
void LanguageModelEstimator::LmState::Clear() {
phone_to_count.clear();
tot_count = 0;
tot_count_with_parents = false;
backoff_allowed = false;
}
BaseFloat LanguageModelEstimator::LmState::LogLike() const {
double ans = 0.0;
int32 tot_count_check = 0;
std::map<int32, int32>::const_iterator iter = phone_to_count.begin(),
end = phone_to_count.end();
for (; iter != end; ++iter) {
int32 count = iter->second;
tot_count_check += count;
double prob = count * 1.0 / tot_count;
ans += log(prob) * count;
}
KALDI_ASSERT(tot_count_check == tot_count);
return ans;
}
void LanguageModelEstimator::InitializeQueue() {
int32 num_lm_states = lm_states_.size();
while (!queue_.empty()) queue_.pop();
for (int32 l = 0; l < num_lm_states; l++) {
lm_states_[l].backoff_allowed = BackoffAllowed(l);
if (lm_states_[l].backoff_allowed) {
BaseFloat like_change = BackoffLogLikelihoodChange(l);
queue_.push(std::pair<BaseFloat,int32>(like_change, l));
}
}
}
BaseFloat LanguageModelEstimator::BackoffLogLikelihoodChange(
int32 l) const {
const LmState &lm_state = lm_states_.at(l);
KALDI_ASSERT(lm_state.backoff_allowed && lm_state.backoff_lmstate_index >= 0);
const LmState &backoff_lm_state = lm_states_.at(
lm_state.backoff_lmstate_index);
KALDI_ASSERT(lm_state.tot_count != 0);
// if the backoff state has zero count, there would naturally be a zero
// cost, but return -1e15 * (count of this lm state)... this encourages the
// lowest-count state to be backed off first.
if (backoff_lm_state.tot_count == 0)
return -1.0e-15 * lm_state.tot_count;
LmState sum_state(backoff_lm_state);
sum_state.Add(lm_state);
BaseFloat log_like_change =
sum_state.LogLike() -
lm_state.LogLike() -
backoff_lm_state.LogLike();
// log-like change should not be positive... give it a margin for round-off
// error.
KALDI_ASSERT(log_like_change < 0.1);
if (log_like_change > 0.0)
log_like_change = 0.0;
return log_like_change;
}
void LanguageModelEstimator::DoBackoff() {
int32 initial_active_states = num_active_lm_states_,
target_num_lm_states = num_basic_lm_states_ + opts_.num_extra_lm_states;
// create 3 intermediate targets and the final target. Between each phase we'll
// do InitializeQueue(), which will get us more exact values.
int32 num_targets = 4;
std::vector<int32> targets(num_targets);
for (int32 t = 0; t < num_targets; t++) {
// the targets get progressively closer to target_num_lm_states;
targets[t] = initial_active_states +
((target_num_lm_states - initial_active_states) * (t + 1)) / num_targets;
}
KALDI_ASSERT(targets.back() == target_num_lm_states);
for (int32 t = 0; t < num_targets; t++) {
KALDI_VLOG(2) << "Backing off states, stage " << t;
InitializeQueue();
int32 this_target = targets[t];
while (num_active_lm_states_ > this_target && !queue_.empty()) {
BaseFloat like_change = queue_.top().first;
int32 lm_state = queue_.top().second;
queue_.pop();
BaseFloat recomputed_like_change = BackoffLogLikelihoodChange(lm_state);
if (!ApproxEqual(like_change, recomputed_like_change)) {
// If it changed (i.e. we had a stale likelihood-change on the queue),
// just put back the recomputed like-change on the queue and make no other
// changes.
KALDI_VLOG(2) << "Not backing off state, since like-change changed from "
<< like_change << " to " << recomputed_like_change;
queue_.push(std::pair<BaseFloat,int32>(recomputed_like_change, lm_state));
} else {
KALDI_VLOG(2) << "Backing off state with like-change = "
<< recomputed_like_change;
BackOffState(lm_state);
}
}
}
KALDI_LOG << "In LM [hard] backoff, target num states was "
<< num_basic_lm_states_ << " + --num-extra-lm-states="
<< opts_.num_extra_lm_states << " = " << target_num_lm_states
<< ", pruned from " << initial_active_states << " to "
<< num_active_lm_states_;
}
void LanguageModelEstimator::BackOffState(int32 l) {
LmState &lm_state = lm_states_.at(l);
KALDI_ASSERT(lm_state.backoff_allowed);
KALDI_ASSERT(lm_state.backoff_lmstate_index >= 0);
KALDI_ASSERT(lm_state.tot_count > 0); // or shouldn't be backing it off.
LmState &backoff_lm_state = lm_states_.at(lm_state.backoff_lmstate_index);
bool backoff_state_had_backoff_allowed = backoff_lm_state.backoff_allowed;
if (backoff_lm_state.tot_count != 0)
num_active_lm_states_--;
// add the counts of lm_state to backoff_lm_state.
backoff_lm_state.Add(lm_state);
// zero the counts in this lm_state.
lm_state.Clear();
backoff_lm_state.backoff_allowed = BackoffAllowed(
lm_state.backoff_lmstate_index);
if (!backoff_state_had_backoff_allowed &&
backoff_lm_state.backoff_allowed) {
// the backoff state would not have been in the queue, but is now allowed in
// the queue.
BaseFloat backoff_like_change = BackoffLogLikelihoodChange(
lm_state.backoff_lmstate_index);
queue_.push(std::pair<BaseFloat,int32>(backoff_like_change,
lm_state.backoff_lmstate_index));
}
}
int32 LanguageModelEstimator::AssignFstStates() {
CheckActiveStates();
int32 num_lm_states = lm_states_.size();
int32 current_fst_state = 0;
for (int32 l = 0; l < num_lm_states; l++)
if (lm_states_[l].tot_count != 0)
lm_states_[l].fst_state = current_fst_state++;
KALDI_ASSERT(current_fst_state == num_active_lm_states_);
return current_fst_state;
}
void LanguageModelEstimator::Estimate(fst::StdVectorFst *fst) {
KALDI_LOG << "Estimating language model with --no-prune-ngram-order="
<< opts_.no_prune_ngram_order << ", --ngram-order="
<< opts_.ngram_order << ", --num-extra-lm-states="
<< opts_.num_extra_lm_states;
SetParentCounts();
num_basic_lm_states_ = CheckActiveStates();
DoBackoff();
int32 num_fst_states = AssignFstStates();
OutputToFst(num_fst_states, fst);
}
int32 LanguageModelEstimator::FindInitialFstState() const {
std::vector<int32> history(1, 0);
int32 l = FindNonzeroLmStateIndexForHistory(history);
KALDI_ASSERT(l != -1 && lm_states_[l].fst_state != -1);
return lm_states_[l].fst_state;
}
bool LanguageModelEstimator::BackoffAllowed(int32 l) const {
const LmState &lm_state = lm_states_.at(l);
if (lm_state.history.size() < opts_.no_prune_ngram_order)
return false;
KALDI_ASSERT(lm_state.tot_count <= lm_state.tot_count_with_parents);
if (lm_state.tot_count != lm_state.tot_count_with_parents)
return false;
if (lm_state.tot_count == 0)
return false;
// the next if-statement is an optimization where we skip the
// following test if we know that it must always be true.
if (lm_state.history.size() == opts_.ngram_order - 1)
return true;
std::map<int32, int32>::const_iterator
iter = lm_state.phone_to_count.begin(),
end = lm_state.phone_to_count.end();
for (; iter != end; ++iter) {
int32 phone = iter->first;
if (phone != 0) {
std::vector<int32> next_hist(lm_state.history);
next_hist.push_back(phone);
int32 next_lmstate = FindLmStateIndexForHistory(next_hist);
if (next_lmstate != -1 &&
lm_states_[next_lmstate].tot_count_with_parents != 0) {
// backoff is not allowed because we need all the context we have
// in order to make this transition; we can't afford to discard
// the leftmost phone.
return false;
}
}
}
return true;
}
void LanguageModelEstimator::OutputToFst(
int32 num_states,
fst::StdVectorFst *fst) const {
KALDI_ASSERT(num_states == num_active_lm_states_);
fst->DeleteStates();
for (int32 i = 0; i < num_states; i++)
fst->AddState();
fst->SetStart(FindInitialFstState());
int64 tot_count = 0;
double tot_logprob = 0.0;
int32 num_lm_states = lm_states_.size();
// note: not all lm-states end up being 'active'.
for (int32 l = 0; l < num_lm_states; l++) {
const LmState &lm_state = lm_states_[l];
if (lm_state.fst_state == -1)
continue;
int32 state_count = lm_state.tot_count;
KALDI_ASSERT(state_count != 0);
std::map<int32, int32>::const_iterator
iter = lm_state.phone_to_count.begin(),
end = lm_state.phone_to_count.end();
for (; iter != end; ++iter) {
int32 phone = iter->first, count = iter->second;
BaseFloat logprob = log(count * 1.0 / state_count);
tot_count += count;
tot_logprob += logprob * count;
if (phone == 0) { // Interpret as final-prob.
fst->SetFinal(lm_state.fst_state, fst::TropicalWeight(-logprob));
} else { // It becomes a transition.
std::vector<int32> next_history(lm_state.history);
next_history.push_back(phone);
int32 dest_lm_state = FindNonzeroLmStateIndexForHistory(next_history),
dest_fst_state = lm_states_[dest_lm_state].fst_state;
KALDI_ASSERT(dest_fst_state != -1);
fst->AddArc(lm_state.fst_state,
fst::StdArc(phone, phone, fst::TropicalWeight(-logprob),
dest_fst_state));
}
}
}
BaseFloat perplexity = exp(-(tot_logprob / tot_count));
KALDI_LOG << "Total number of phone instances seen was " << tot_count;
KALDI_LOG << "Perplexity on training data is: " << perplexity;
KALDI_LOG << "Note: perplexity on unseen data will be infinity as there is "
<< "no smoothing. This is by design, to reduce the number of arcs.";
fst::Connect(fst);
// Make sure that Connect does not delete any states.
int32 num_states_connected = fst->NumStates();
KALDI_ASSERT(num_states_connected == num_states);
// arc-sort. ilabel or olabel doesn't matter, it's an acceptor.
fst::ArcSort(fst, fst::ILabelCompare<fst::StdArc>());
KALDI_LOG << "Created phone language model with " << num_states
<< " states and " << fst::NumArcs(*fst) << " arcs.";
}
} // namespace chain
} // namespace kaldi