Blame view
src/chainbin/nnet3-chain-e2e-get-egs.cc
12.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
// chainbin/nnet3-chain-e2e-get-egs.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2017, 2018 Hossein Hadian // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <sstream> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "hmm/posterior.h" #include "nnet3/nnet-example.h" #include "nnet3/nnet-chain-example.h" #include "nnet3/nnet-example-utils.h" namespace kaldi { namespace nnet3 { /** This function finds the minimum number of arcs required to traverse the input fst from the initial state to a final state. */ static int32 FindMinimumLengthPath( const fst::StdVectorFst &fst) { using fst::VectorFst; using fst::StdArc; using fst::StdVectorFst; StdVectorFst distance_fst(fst); // Modify distance_fst such that all the emitting // arcs have cost 1 and others (and final-probs) a cost of zero int32 num_states = distance_fst.NumStates(); for (int32 state = 0; state < num_states; state++) { for (fst::MutableArcIterator<StdVectorFst> aiter(&distance_fst, state); !aiter.Done(); aiter.Next()) { const StdArc &arc = aiter.Value(); StdArc arc2(arc); if (arc.olabel == 0) arc2.weight = fst::TropicalWeight::One(); else arc2.weight = fst::TropicalWeight(1.0); aiter.SetValue(arc2); } if (distance_fst.Final(state) != fst::TropicalWeight::Zero()) distance_fst.Final(state) = fst::TropicalWeight::One(); } VectorFst<StdArc> shortest_path; fst::ShortestPath(distance_fst, &shortest_path); return shortest_path.NumStates() - 1; } /** This function does all the processing for one utterance, and outputs the supervision objects to 'example_writer'. Note: if normalization_fst is the empty FST (with no states), it skips the final stage of egs preparation and you should do it later with nnet3-chain-normalize-egs. */ static bool ProcessFile(const ExampleGenerationConfig &opts, const TransitionModel &trans_model, const fst::StdVectorFst &normalization_fst, const MatrixBase<BaseFloat> &feats, const MatrixBase<BaseFloat> *ivector_feats, int32 ivector_period, const fst::StdVectorFst& training_fst, const std::string &utt_id, bool compress, NnetChainExampleWriter *example_writer) { // check feats.NumRows() and if it is not equal to an allowed num-frames // delete a few frames from beginning or end int32 min_diff = 100; int32 len_extend_context = 0; for (int32 i = 0; i < opts.num_frames.size(); i++) if (abs(feats.NumRows() - opts.num_frames[i]) < abs(min_diff)) min_diff = feats.NumRows() - opts.num_frames[i]; if (min_diff != 0) { KALDI_WARN << "No exact match found for the length of utt " << utt_id << " which has length: " << feats.NumRows() << " closest allowed length is off by " << min_diff << " frames. Will try to fix it.."; if (abs(min_diff) < 5) // we assume possibly up to 5 frames from the end can be safely deleted len_extend_context = -min_diff; // let the code below do it else // unexpected KALDI_ERR << "Too much length difference for utterance " << utt_id; } int32 num_input_frames = feats.NumRows(), factor = opts.frame_subsampling_factor, num_frames_subsampled = (num_input_frames + len_extend_context + factor - 1) / factor, num_output_frames = num_frames_subsampled; chain::Supervision supervision; KALDI_VLOG(2) << "Preparing supervision for utt " << utt_id; if (!TrainingGraphToSupervisionE2e(training_fst, trans_model, num_output_frames, &supervision)) return false; int32 min_fst_duration = FindMinimumLengthPath(supervision.e2e_fsts[0]); if (min_fst_duration > num_frames_subsampled) { KALDI_WARN << "For utterance " << utt_id << ", there are too many phones for too few frames; " << "Number of subsampled frames: " << num_frames_subsampled << ", Minimum number of frames required by the fst: " << min_fst_duration; return false; } if (normalization_fst.NumStates() > 0 && !AddWeightToSupervisionFst(normalization_fst, &supervision)) { KALDI_WARN << "For utterance " << utt_id << ", FST was empty after composing with normalization FST. " << "This should be extremely rare (a few per corpus, at most)"; } int32 first_frame = 0; // we shift the time-indexes of all these parts so // that the supervised part starts from frame 0. Vector<BaseFloat> output_weights(num_output_frames, kSetZero); output_weights.Set(1.0); NnetChainSupervision nnet_supervision("output", supervision, output_weights, first_frame, opts.frame_subsampling_factor); NnetChainExample nnet_chain_eg; nnet_chain_eg.outputs.resize(1); nnet_chain_eg.outputs[0].Swap(&nnet_supervision); nnet_chain_eg.inputs.resize(ivector_feats != NULL ? 2 : 1); int32 left_context = (opts.left_context_initial >= 0 ? opts.left_context_initial : opts.left_context); int32 right_context = (opts.right_context_final >= 0 ? opts.right_context_final : opts.right_context); int32 tot_input_frames = left_context + num_input_frames + right_context + len_extend_context; Matrix<BaseFloat> input_frames(tot_input_frames, feats.NumCols(), kUndefined); int32 start_frame = first_frame - left_context; for (int32 t = start_frame; t < start_frame + tot_input_frames; t++) { int32 t2 = t; if (t2 < 0) t2 = 0; if (t2 >= num_input_frames) t2 = num_input_frames - 1; int32 j = t - start_frame; SubVector<BaseFloat> src(feats, t2), dest(input_frames, j); dest.CopyFromVec(src); } NnetIo input_io("input", -left_context, input_frames); nnet_chain_eg.inputs[0].Swap(&input_io); if (ivector_feats != NULL) { // if applicable, add the iVector feature. // choose iVector from a random frame in the utterance int32 ivector_frame = RandInt(start_frame, start_frame + num_input_frames - 1), ivector_frame_subsampled = ivector_frame / ivector_period; if (ivector_frame_subsampled < 0) ivector_frame_subsampled = 0; if (ivector_frame_subsampled >= ivector_feats->NumRows()) ivector_frame_subsampled = ivector_feats->NumRows() - 1; Matrix<BaseFloat> ivector(1, ivector_feats->NumCols()); ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled)); NnetIo ivector_io("ivector", 0, ivector); nnet_chain_eg.inputs[1].Swap(&ivector_io); } if (compress) nnet_chain_eg.Compress(); std::ostringstream os; os << utt_id; std::string key = os.str(); // key is <utt_id>-<frame_id> example_writer->Write(key, nnet_chain_eg); return true; } } // namespace nnet2 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Get frame-by-frame examples of data for nnet3+chain end2end neural network " "training." "Note: if <normalization-fst> is not supplied the egs will not be " "ready for training; in that case they should later be processed " "with nnet3-chain-normalize-egs " " " "Usage: nnet3-chain-get-egs [options] [<normalization-fst>] <features-rspecifier> " "<fst-rspecifier> <trans-model> <egs-wspecifier> " " "; bool compress = true; int32 length_tolerance = 100, online_ivector_period = 1; ExampleGenerationConfig eg_config; // controls num-frames, // left/right-context, etc. int32 srand_seed = 0; std::string online_ivector_rspecifier; ParseOptions po(usage); po.Register("compress", &compress, "If true, write egs in " "compressed format."); po.Register("ivectors", &online_ivector_rspecifier, "Alias for " "--online-ivectors option, for back compatibility"); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of " "ivector features, as a matrix."); po.Register("online-ivector-period", &online_ivector_period, "Number of " "frames between iVectors in matrices supplied to the " "--online-ivectors option"); po.Register("srand", &srand_seed, "Seed for random number generator "); po.Register("length-tolerance", &length_tolerance, "Tolerance for " "difference in num-frames between feat and ivector matrices"); eg_config.Register(&po); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } std::string normalization_fst_rxfilename, feature_rspecifier, fst_rspecifier, trans_model_rxfilename, examples_wspecifier; if (po.NumArgs() == 4) { feature_rspecifier = po.GetArg(1); fst_rspecifier = po.GetArg(2), trans_model_rxfilename = po.GetArg(3), examples_wspecifier = po.GetArg(4); } else { normalization_fst_rxfilename = po.GetArg(1); KALDI_ASSERT(!normalization_fst_rxfilename.empty()); feature_rspecifier = po.GetArg(2); fst_rspecifier = po.GetArg(3), trans_model_rxfilename = po.GetArg(4), examples_wspecifier = po.GetArg(5); } eg_config.ComputeDerived(); fst::StdVectorFst normalization_fst; if (!normalization_fst_rxfilename.empty()) { ReadFstKaldi(normalization_fst_rxfilename, &normalization_fst); KALDI_ASSERT(normalization_fst.NumStates() > 0); } TransitionModel trans_model; ReadKaldiObject(trans_model_rxfilename, &trans_model); RandomAccessBaseFloatMatrixReader feat_reader(feature_rspecifier); SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier); NnetChainExampleWriter example_writer(examples_wspecifier); RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); int32 num_err = 0; for (; !fst_reader.Done(); fst_reader.Next()) { std::string key = fst_reader.Key(); if (!feat_reader.HasKey(key)) { num_err++; KALDI_WARN << "No features for utterance " << key; } else { const Matrix<BaseFloat> &features = feat_reader.Value(key); VectorFst<StdArc> fst(fst_reader.Value()); const Matrix<BaseFloat> *online_ivector_feats = NULL; if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(key)) { KALDI_WARN << "No iVectors for utterance " << key; num_err++; continue; } else { // this address will be valid until we call HasKey() or Value() // again. online_ivector_feats = &(online_ivector_reader.Value(key)); } } if (online_ivector_feats != NULL && (abs(features.NumRows() - (online_ivector_feats->NumRows() * online_ivector_period)) > length_tolerance || online_ivector_feats->NumRows() == 0)) { KALDI_WARN << "Length difference between feats " << features.NumRows() << " and iVectors " << online_ivector_feats->NumRows() << "exceeds tolerance " << length_tolerance; num_err++; continue; } if (!ProcessFile(eg_config, trans_model, normalization_fst, features, online_ivector_feats, online_ivector_period, fst, key, compress, &example_writer)) num_err++; } } if (num_err > 0) KALDI_WARN << num_err << " utterances had errors and could " "not be processed."; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |