Blame view

src/chainbin/nnet3-chain-e2e-get-egs.cc 12.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  // chainbin/nnet3-chain-e2e-get-egs.cc
  
  // Copyright      2015  Johns Hopkins University (author:  Daniel Povey)
  //                2017, 2018  Hossein Hadian
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <sstream>
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "fstext/fstext-lib.h"
  #include "hmm/posterior.h"
  #include "nnet3/nnet-example.h"
  #include "nnet3/nnet-chain-example.h"
  #include "nnet3/nnet-example-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  
  /**
     This function finds the minimum number of arcs required to
     traverse the input fst from the initial state to a final state.
  */
  
  static int32 FindMinimumLengthPath(
      const fst::StdVectorFst &fst) {
    using fst::VectorFst;
    using fst::StdArc;
    using fst::StdVectorFst;
    StdVectorFst distance_fst(fst);
    // Modify distance_fst such that all the emitting
    // arcs have cost 1 and others (and final-probs) a cost of zero
    int32 num_states = distance_fst.NumStates();
    for (int32 state = 0; state < num_states; state++) {
      for (fst::MutableArcIterator<StdVectorFst> aiter(&distance_fst, state);
           !aiter.Done(); aiter.Next()) {
        const StdArc &arc = aiter.Value();
        StdArc arc2(arc);
        if (arc.olabel == 0)
          arc2.weight = fst::TropicalWeight::One();
        else
          arc2.weight = fst::TropicalWeight(1.0);
        aiter.SetValue(arc2);
      }
      if (distance_fst.Final(state) != fst::TropicalWeight::Zero())
        distance_fst.Final(state) = fst::TropicalWeight::One();
    }
    VectorFst<StdArc> shortest_path;
    fst::ShortestPath(distance_fst, &shortest_path);
    return shortest_path.NumStates() - 1;
  }
  
  /**
     This function does all the processing for one utterance, and outputs the
     supervision objects to 'example_writer'.  Note: if normalization_fst is the
     empty FST (with no states), it skips the final stage of egs preparation and
     you should do it later with nnet3-chain-normalize-egs.
  */
  
  static bool ProcessFile(const ExampleGenerationConfig &opts,
                          const TransitionModel &trans_model,
                          const fst::StdVectorFst &normalization_fst,
                          const MatrixBase<BaseFloat> &feats,
                          const MatrixBase<BaseFloat> *ivector_feats,
                          int32 ivector_period,
                          const fst::StdVectorFst& training_fst,
                          const std::string &utt_id,
                          bool compress,
                          NnetChainExampleWriter *example_writer) {
  
    // check feats.NumRows() and if it is not equal to an allowed num-frames
    // delete a few frames from beginning or end
    int32 min_diff = 100;
    int32 len_extend_context = 0;
    for (int32 i = 0; i < opts.num_frames.size(); i++)
      if (abs(feats.NumRows() - opts.num_frames[i]) < abs(min_diff))
        min_diff = feats.NumRows() - opts.num_frames[i];
  
    if (min_diff != 0) {
      KALDI_WARN << "No exact match found for the length of utt " << utt_id
                 << " which has length: " << feats.NumRows()
                 << " closest allowed length is off by " << min_diff
                 << " frames. Will try to fix it..";
      if (abs(min_diff) < 5)  // we assume possibly up to 5 frames from the end can be safely deleted
        len_extend_context = -min_diff;  // let the code below do it
      else  // unexpected
        KALDI_ERR << "Too much length difference for utterance " << utt_id;
    }
    int32 num_input_frames = feats.NumRows(),
          factor = opts.frame_subsampling_factor,
          num_frames_subsampled = (num_input_frames + len_extend_context + factor - 1) / factor,
          num_output_frames = num_frames_subsampled;
  
  
    chain::Supervision supervision;
    KALDI_VLOG(2) << "Preparing supervision for utt " << utt_id;
    if (!TrainingGraphToSupervisionE2e(training_fst, trans_model,
                                       num_output_frames, &supervision))
      return false;
  
    int32 min_fst_duration = FindMinimumLengthPath(supervision.e2e_fsts[0]);
    if (min_fst_duration > num_frames_subsampled) {
      KALDI_WARN << "For utterance " << utt_id
                 << ", there are too many phones for too few frames; "
                 << "Number of subsampled frames: " << num_frames_subsampled
                 << ", Minimum number of frames required by the fst: " << min_fst_duration;
      return false;
    }
  
    if (normalization_fst.NumStates() > 0 &&
        !AddWeightToSupervisionFst(normalization_fst,
                                   &supervision)) {
      KALDI_WARN << "For utterance " << utt_id
                 << ", FST was empty after composing with normalization FST. "
                 << "This should be extremely rare (a few per corpus, at most)";
    }
  
    int32 first_frame = 0;  // we shift the time-indexes of all these parts so
                            // that the supervised part starts from frame 0.
  
    Vector<BaseFloat> output_weights(num_output_frames, kSetZero);
    output_weights.Set(1.0);
  
    NnetChainSupervision nnet_supervision("output", supervision,
                                          output_weights,
                                          first_frame,
                                          opts.frame_subsampling_factor);
  
    NnetChainExample nnet_chain_eg;
    nnet_chain_eg.outputs.resize(1);
    nnet_chain_eg.outputs[0].Swap(&nnet_supervision);
    nnet_chain_eg.inputs.resize(ivector_feats != NULL ? 2 : 1);
  
    int32 left_context = (opts.left_context_initial >= 0 ?
                          opts.left_context_initial : opts.left_context);
    int32 right_context = (opts.right_context_final >= 0 ?
                           opts.right_context_final : opts.right_context);
  
  
    int32 tot_input_frames = left_context + num_input_frames +
                             right_context + len_extend_context;
  
    Matrix<BaseFloat> input_frames(tot_input_frames, feats.NumCols(),
                                   kUndefined);
  
    int32 start_frame = first_frame - left_context;
    for (int32 t = start_frame; t < start_frame + tot_input_frames; t++) {
      int32 t2 = t;
      if (t2 < 0) t2 = 0;
      if (t2 >= num_input_frames) t2 = num_input_frames - 1;
      int32 j = t - start_frame;
      SubVector<BaseFloat> src(feats, t2),
          dest(input_frames, j);
      dest.CopyFromVec(src);
    }
    NnetIo input_io("input", -left_context, input_frames);
    nnet_chain_eg.inputs[0].Swap(&input_io);
  
    if (ivector_feats != NULL) {
      // if applicable, add the iVector feature.
      // choose iVector from a random frame in the utterance
      int32 ivector_frame = RandInt(start_frame,
                                    start_frame + num_input_frames - 1),
          ivector_frame_subsampled = ivector_frame / ivector_period;
      if (ivector_frame_subsampled < 0)
        ivector_frame_subsampled = 0;
      if (ivector_frame_subsampled >= ivector_feats->NumRows())
        ivector_frame_subsampled = ivector_feats->NumRows() - 1;
      Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
      ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
      NnetIo ivector_io("ivector", 0, ivector);
      nnet_chain_eg.inputs[1].Swap(&ivector_io);
    }
  
    if (compress)
      nnet_chain_eg.Compress();
  
    std::ostringstream os;
    os << utt_id;
  
    std::string key = os.str(); // key is <utt_id>-<frame_id>
  
    example_writer->Write(key, nnet_chain_eg);
    return true;
  }
  
  } // namespace nnet2
  } // namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
      using fst::SymbolTable;
      using fst::VectorFst;
      using fst::StdArc;
  
      const char *usage =
          "Get frame-by-frame examples of data for nnet3+chain end2end neural network
  "
          "training."
          "Note: if <normalization-fst> is not supplied the egs will not be
  "
          "ready for training; in that case they should later be processed
  "
          "with nnet3-chain-normalize-egs
  "
          "
  "
          "Usage:  nnet3-chain-get-egs [options] [<normalization-fst>] <features-rspecifier> "
          "<fst-rspecifier> <trans-model> <egs-wspecifier>
  "
          "
  ";
  
      bool compress = true;
      int32 length_tolerance = 100, online_ivector_period = 1;
  
      ExampleGenerationConfig eg_config;  // controls num-frames,
                                          // left/right-context, etc.
  
      int32 srand_seed = 0;
      std::string online_ivector_rspecifier;
  
      ParseOptions po(usage);
      po.Register("compress", &compress, "If true, write egs in "
                  "compressed format.");
      po.Register("ivectors", &online_ivector_rspecifier, "Alias for "
                  "--online-ivectors option, for back compatibility");
      po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of "
                  "ivector features, as a matrix.");
      po.Register("online-ivector-period", &online_ivector_period, "Number of "
                  "frames between iVectors in matrices supplied to the "
                  "--online-ivectors option");
      po.Register("srand", &srand_seed, "Seed for random number generator ");
      po.Register("length-tolerance", &length_tolerance, "Tolerance for "
                  "difference in num-frames between feat and ivector matrices");
      eg_config.Register(&po);
  
      po.Read(argc, argv);
  
      srand(srand_seed);
  
      if (po.NumArgs() < 4 || po.NumArgs() > 5) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string
          normalization_fst_rxfilename,
          feature_rspecifier,
          fst_rspecifier,
          trans_model_rxfilename,
          examples_wspecifier;
      if (po.NumArgs() == 4) {
        feature_rspecifier = po.GetArg(1);
        fst_rspecifier = po.GetArg(2),
        trans_model_rxfilename = po.GetArg(3),
        examples_wspecifier = po.GetArg(4);
      } else {
        normalization_fst_rxfilename = po.GetArg(1);
        KALDI_ASSERT(!normalization_fst_rxfilename.empty());
        feature_rspecifier = po.GetArg(2);
        fst_rspecifier = po.GetArg(3),
        trans_model_rxfilename = po.GetArg(4),
        examples_wspecifier = po.GetArg(5);
      }
  
      eg_config.ComputeDerived();
  
      fst::StdVectorFst normalization_fst;
      if (!normalization_fst_rxfilename.empty()) {
        ReadFstKaldi(normalization_fst_rxfilename, &normalization_fst);
        KALDI_ASSERT(normalization_fst.NumStates() > 0);
      }
  
      TransitionModel trans_model;
      ReadKaldiObject(trans_model_rxfilename, &trans_model);
  
      RandomAccessBaseFloatMatrixReader feat_reader(feature_rspecifier);
      SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier);
      NnetChainExampleWriter example_writer(examples_wspecifier);
      RandomAccessBaseFloatMatrixReader online_ivector_reader(
          online_ivector_rspecifier);
  
      int32 num_err = 0;
  
      for (; !fst_reader.Done(); fst_reader.Next()) {
        std::string key = fst_reader.Key();
        if (!feat_reader.HasKey(key)) {
          num_err++;
          KALDI_WARN << "No features for utterance " << key;
        } else {
          const Matrix<BaseFloat> &features = feat_reader.Value(key);
          VectorFst<StdArc> fst(fst_reader.Value());
          const Matrix<BaseFloat> *online_ivector_feats = NULL;
          if (!online_ivector_rspecifier.empty()) {
            if (!online_ivector_reader.HasKey(key)) {
              KALDI_WARN << "No iVectors for utterance " << key;
              num_err++;
              continue;
            } else {
              // this address will be valid until we call HasKey() or Value()
              // again.
              online_ivector_feats = &(online_ivector_reader.Value(key));
            }
          }
          if (online_ivector_feats != NULL &&
              (abs(features.NumRows() - (online_ivector_feats->NumRows() *
                                      online_ivector_period)) > length_tolerance
               || online_ivector_feats->NumRows() == 0)) {
            KALDI_WARN << "Length difference between feats " << features.NumRows()
                       << " and iVectors " << online_ivector_feats->NumRows()
                       << "exceeds tolerance " << length_tolerance;
            num_err++;
            continue;
          }
  
          if (!ProcessFile(eg_config, trans_model, normalization_fst, features,
                           online_ivector_feats, online_ivector_period,
                           fst, key, compress, &example_writer))
            num_err++;
        }
      }
      if (num_err > 0)
        KALDI_WARN << num_err << " utterances had errors and could "
            "not be processed.";
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }