Blame view

src/chainbin/nnet3-chain-train.cc 3.22 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  // nnet3bin/nnet3-chain-train.cc
  
  // Copyright 2015  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "nnet3/nnet-chain-training.h"
  #include "cudamatrix/cu-allocator.h"
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      using namespace kaldi::chain;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Train nnet3+chain neural network parameters with backprop and stochastic
  "
          "gradient descent.  Minibatches are to be created by nnet3-chain-merge-egs in
  "
          "the input pipeline.  This training program is single-threaded (best to
  "
          "use it with a GPU).
  "
          "
  "
          "Usage:  nnet3-chain-train [options] <raw-nnet-in> <denominator-fst-in> <chain-training-examples-in> <raw-nnet-out>
  "
          "
  "
          "nnet3-chain-train 1.raw den.fst 'ark:nnet3-merge-egs 1.cegs ark:-|' 2.raw
  ";
  
      int32 srand_seed = 0;
      bool binary_write = true;
      std::string use_gpu = "yes";
      NnetChainTrainingOptions opts;
  
      ParseOptions po(usage);
      po.Register("srand", &srand_seed, "Seed for random number generator ");
      po.Register("binary", &binary_write, "Write output in binary mode");
      po.Register("use-gpu", &use_gpu,
                  "yes|no|optional|wait, only has effect if compiled with CUDA");
  
      opts.Register(&po);
      RegisterCuAllocatorOptions(&po);
  
      po.Read(argc, argv);
  
      srand(srand_seed);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
  #if HAVE_CUDA==1
      CuDevice::Instantiate().SelectGpuId(use_gpu);
  #endif
  
      std::string nnet_rxfilename = po.GetArg(1),
          den_fst_rxfilename = po.GetArg(2),
          examples_rspecifier = po.GetArg(3),
          nnet_wxfilename = po.GetArg(4);
  
      Nnet nnet;
      ReadKaldiObject(nnet_rxfilename, &nnet);
  
      bool ok;
  
      {
        fst::StdVectorFst den_fst;
        ReadFstKaldi(den_fst_rxfilename, &den_fst);
  
        NnetChainTrainer trainer(opts, den_fst, &nnet);
  
        SequentialNnetChainExampleReader example_reader(examples_rspecifier);
  
        for (; !example_reader.Done(); example_reader.Next())
          trainer.Train(example_reader.Value());
  
        ok = trainer.PrintTotalStats();
      }
  
  #if HAVE_CUDA==1
      CuDevice::Instantiate().PrintProfile();
  #endif
      WriteKaldiObject(nnet, nnet_wxfilename, binary_write);
      KALDI_LOG << "Wrote raw model to " << nnet_wxfilename;
      return (ok ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }