Blame view
src/cudadecoder/cuda-fst.cc
7.17 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
// cudadecoder/cuda-fst.cc // // Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. // Hugo Braun, Justin Luitjens, Ryan Leary // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if HAVE_CUDA == 1 #include "cudadecoder/cuda-fst.h" #include <cuda_runtime_api.h> #include <nvToolsExt.h> namespace kaldi { namespace cuda_decoder { void CudaFst::ComputeOffsets(const fst::Fst<StdArc> &fst) { // count states since Fst doesn't provide this functionality num_states_ = 0; for (fst::StateIterator<fst::Fst<StdArc> > iter(fst); !iter.Done(); iter.Next()) ++num_states_; // allocate and initialize offset arrays h_final_.resize(num_states_); h_e_offsets_.resize(num_states_ + 1); h_ne_offsets_.resize(num_states_ + 1); // iterate through states and arcs and count number of arcs per state e_count_ = 0; ne_count_ = 0; // Init first offsets h_ne_offsets_[0] = 0; h_e_offsets_[0] = 0; for (int i = 0; i < num_states_; i++) { h_final_[i] = fst.Final(i).Value(); // count emiting and non_emitting arcs for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst, i); !aiter.Done(); aiter.Next()) { StdArc arc = aiter.Value(); int32 ilabel = arc.ilabel; if (ilabel != 0) { // emitting e_count_++; } else { // non-emitting ne_count_++; } } h_ne_offsets_[i + 1] = ne_count_; h_e_offsets_[i + 1] = e_count_; } // We put the emitting arcs before the nonemitting arcs in the arc list // adding offset to the non emitting arcs // we go to num_states_+1 to take into account the last offset for (int i = 0; i < num_states_ + 1; i++) h_ne_offsets_[i] += e_count_; // e_arcs before arc_count_ = e_count_ + ne_count_; } void CudaFst::AllocateData(const fst::Fst<StdArc> &fst) { d_e_offsets_ = static_cast<unsigned int *>(CuDevice::Instantiate().Malloc( (num_states_ + 1) * sizeof(*d_e_offsets_))); d_ne_offsets_ = static_cast<unsigned int *>(CuDevice::Instantiate().Malloc( (num_states_ + 1) * sizeof(*d_ne_offsets_))); d_final_ = static_cast<float *>( CuDevice::Instantiate().Malloc((num_states_) * sizeof(*d_final_))); h_arc_weights_.resize(arc_count_); h_arc_nextstate_.resize(arc_count_); // ilabels (id indexing) h_arc_id_ilabels_.resize(arc_count_); h_arc_olabels_.resize(arc_count_); d_arc_weights_ = static_cast<float *>( CuDevice::Instantiate().Malloc(arc_count_ * sizeof(*d_arc_weights_))); d_arc_nextstates_ = static_cast<StateId *>( CuDevice::Instantiate().Malloc(arc_count_ * sizeof(*d_arc_nextstates_))); // Only the ilabels for the e_arc are needed on the device d_arc_pdf_ilabels_ = static_cast<int32 *>( CuDevice::Instantiate().Malloc(e_count_ * sizeof(*d_arc_pdf_ilabels_))); } void CudaFst::PopulateArcs(const fst::Fst<StdArc> &fst) { // now populate arc data int e_idx = 0; int ne_idx = e_count_; // starts where e_offsets_ ends for (int i = 0; i < num_states_; i++) { for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst, i); !aiter.Done(); aiter.Next()) { StdArc arc = aiter.Value(); int idx; if (arc.ilabel != 0) { // emitting idx = e_idx++; } else { idx = ne_idx++; } h_arc_weights_[idx] = arc.weight.Value(); h_arc_nextstate_[idx] = arc.nextstate; h_arc_id_ilabels_[idx] = arc.ilabel; // For now we consider id indexing == pdf indexing // If the two are differents, we'll call ApplyTransModelOnIlabels with a // TransitionModel h_arc_pdf_ilabels_[idx] = arc.ilabel; h_arc_olabels_[idx] = arc.olabel; } } } void CudaFst::ApplyTransitionModelOnIlabels( const TransitionModel &trans_model) { // Converting ilabel here, to avoid reindexing when reading nnet3 output // We only need to convert the emitting arcs // The emitting arcs are the first e_count_ arcs for (int iarc = 0; iarc < e_count_; ++iarc) h_arc_pdf_ilabels_[iarc] = trans_model.TransitionIdToPdf(h_arc_id_ilabels_[iarc]); } void CudaFst::CopyDataToDevice() { KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy( d_e_offsets_, &h_e_offsets_[0], (num_states_ + 1) * sizeof(*d_e_offsets_), cudaMemcpyHostToDevice)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy( d_ne_offsets_, &h_ne_offsets_[0], (num_states_ + 1) * sizeof(*d_ne_offsets_), cudaMemcpyHostToDevice)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(d_final_, &h_final_[0], num_states_ * sizeof(*d_final_), cudaMemcpyHostToDevice)); KALDI_DECODER_CUDA_API_CHECK_ERROR( cudaMemcpy(d_arc_weights_, &h_arc_weights_[0], arc_count_ * sizeof(*d_arc_weights_), cudaMemcpyHostToDevice)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy( d_arc_nextstates_, &h_arc_nextstate_[0], arc_count_ * sizeof(*d_arc_nextstates_), cudaMemcpyHostToDevice)); KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy( d_arc_pdf_ilabels_, &h_arc_pdf_ilabels_[0], e_count_ * sizeof(*d_arc_pdf_ilabels_), cudaMemcpyHostToDevice)); } void CudaFst::Initialize(const fst::Fst<StdArc> &fst, const TransitionModel *trans_model) { nvtxRangePushA("CudaFst constructor"); start_ = fst.Start(); ComputeOffsets(fst); AllocateData(fst); // Temporarily allocating data for this vector // We just need it during CSR generation. We will clear it // at the end of Initialize h_arc_pdf_ilabels_.resize(arc_count_); PopulateArcs(fst); if (trans_model) ApplyTransitionModelOnIlabels(*trans_model); KALDI_ASSERT(d_e_offsets_); KALDI_ASSERT(d_ne_offsets_); KALDI_ASSERT(d_final_); KALDI_ASSERT(d_arc_weights_); KALDI_ASSERT(d_arc_nextstates_); KALDI_ASSERT(d_arc_pdf_ilabels_); CopyDataToDevice(); // Making sure the graph is ready cudaDeviceSynchronize(); KALDI_DECODER_CUDA_CHECK_ERROR(); h_arc_pdf_ilabels_.clear(); // we don't need those on host nvtxRangePop(); } void CudaFst::Finalize() { nvtxRangePushA("CudaFst destructor"); // Making sure that Initialize was called before Finalize KALDI_ASSERT(d_e_offsets_ && "Please call CudaFst::Initialize() before calling Finalize()"); KALDI_ASSERT(d_ne_offsets_); KALDI_ASSERT(d_final_); KALDI_ASSERT(d_arc_weights_); KALDI_ASSERT(d_arc_nextstates_); KALDI_ASSERT(d_arc_pdf_ilabels_); CuDevice::Instantiate().Free(d_e_offsets_); CuDevice::Instantiate().Free(d_ne_offsets_); CuDevice::Instantiate().Free(d_final_); CuDevice::Instantiate().Free(d_arc_weights_); CuDevice::Instantiate().Free(d_arc_nextstates_); CuDevice::Instantiate().Free(d_arc_pdf_ilabels_); nvtxRangePop(); } } // end namespace cuda_decoder } // end namespace kaldi #endif // HAVE_CUDA == 1 |