cuda-fst.cc
7.17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// cudadecoder/cuda-fst.cc
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Hugo Braun, Justin Luitjens, Ryan Leary
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include "cudadecoder/cuda-fst.h"
#include <cuda_runtime_api.h>
#include <nvToolsExt.h>
namespace kaldi {
namespace cuda_decoder {
void CudaFst::ComputeOffsets(const fst::Fst<StdArc> &fst) {
// count states since Fst doesn't provide this functionality
num_states_ = 0;
for (fst::StateIterator<fst::Fst<StdArc> > iter(fst); !iter.Done();
iter.Next())
++num_states_;
// allocate and initialize offset arrays
h_final_.resize(num_states_);
h_e_offsets_.resize(num_states_ + 1);
h_ne_offsets_.resize(num_states_ + 1);
// iterate through states and arcs and count number of arcs per state
e_count_ = 0;
ne_count_ = 0;
// Init first offsets
h_ne_offsets_[0] = 0;
h_e_offsets_[0] = 0;
for (int i = 0; i < num_states_; i++) {
h_final_[i] = fst.Final(i).Value();
// count emiting and non_emitting arcs
for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst, i); !aiter.Done();
aiter.Next()) {
StdArc arc = aiter.Value();
int32 ilabel = arc.ilabel;
if (ilabel != 0) { // emitting
e_count_++;
} else { // non-emitting
ne_count_++;
}
}
h_ne_offsets_[i + 1] = ne_count_;
h_e_offsets_[i + 1] = e_count_;
}
// We put the emitting arcs before the nonemitting arcs in the arc list
// adding offset to the non emitting arcs
// we go to num_states_+1 to take into account the last offset
for (int i = 0; i < num_states_ + 1; i++)
h_ne_offsets_[i] += e_count_; // e_arcs before
arc_count_ = e_count_ + ne_count_;
}
void CudaFst::AllocateData(const fst::Fst<StdArc> &fst) {
d_e_offsets_ = static_cast<unsigned int *>(CuDevice::Instantiate().Malloc(
(num_states_ + 1) * sizeof(*d_e_offsets_)));
d_ne_offsets_ = static_cast<unsigned int *>(CuDevice::Instantiate().Malloc(
(num_states_ + 1) * sizeof(*d_ne_offsets_)));
d_final_ = static_cast<float *>(
CuDevice::Instantiate().Malloc((num_states_) * sizeof(*d_final_)));
h_arc_weights_.resize(arc_count_);
h_arc_nextstate_.resize(arc_count_);
// ilabels (id indexing)
h_arc_id_ilabels_.resize(arc_count_);
h_arc_olabels_.resize(arc_count_);
d_arc_weights_ = static_cast<float *>(
CuDevice::Instantiate().Malloc(arc_count_ * sizeof(*d_arc_weights_)));
d_arc_nextstates_ = static_cast<StateId *>(
CuDevice::Instantiate().Malloc(arc_count_ * sizeof(*d_arc_nextstates_)));
// Only the ilabels for the e_arc are needed on the device
d_arc_pdf_ilabels_ = static_cast<int32 *>(
CuDevice::Instantiate().Malloc(e_count_ * sizeof(*d_arc_pdf_ilabels_)));
}
void CudaFst::PopulateArcs(const fst::Fst<StdArc> &fst) {
// now populate arc data
int e_idx = 0;
int ne_idx = e_count_; // starts where e_offsets_ ends
for (int i = 0; i < num_states_; i++) {
for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst, i); !aiter.Done();
aiter.Next()) {
StdArc arc = aiter.Value();
int idx;
if (arc.ilabel != 0) { // emitting
idx = e_idx++;
} else {
idx = ne_idx++;
}
h_arc_weights_[idx] = arc.weight.Value();
h_arc_nextstate_[idx] = arc.nextstate;
h_arc_id_ilabels_[idx] = arc.ilabel;
// For now we consider id indexing == pdf indexing
// If the two are differents, we'll call ApplyTransModelOnIlabels with a
// TransitionModel
h_arc_pdf_ilabels_[idx] = arc.ilabel;
h_arc_olabels_[idx] = arc.olabel;
}
}
}
void CudaFst::ApplyTransitionModelOnIlabels(
const TransitionModel &trans_model) {
// Converting ilabel here, to avoid reindexing when reading nnet3 output
// We only need to convert the emitting arcs
// The emitting arcs are the first e_count_ arcs
for (int iarc = 0; iarc < e_count_; ++iarc)
h_arc_pdf_ilabels_[iarc] =
trans_model.TransitionIdToPdf(h_arc_id_ilabels_[iarc]);
}
void CudaFst::CopyDataToDevice() {
KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(
d_e_offsets_, &h_e_offsets_[0], (num_states_ + 1) * sizeof(*d_e_offsets_),
cudaMemcpyHostToDevice));
KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(
d_ne_offsets_, &h_ne_offsets_[0],
(num_states_ + 1) * sizeof(*d_ne_offsets_), cudaMemcpyHostToDevice));
KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(d_final_, &h_final_[0],
num_states_ * sizeof(*d_final_),
cudaMemcpyHostToDevice));
KALDI_DECODER_CUDA_API_CHECK_ERROR(
cudaMemcpy(d_arc_weights_, &h_arc_weights_[0],
arc_count_ * sizeof(*d_arc_weights_), cudaMemcpyHostToDevice));
KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(
d_arc_nextstates_, &h_arc_nextstate_[0],
arc_count_ * sizeof(*d_arc_nextstates_), cudaMemcpyHostToDevice));
KALDI_DECODER_CUDA_API_CHECK_ERROR(cudaMemcpy(
d_arc_pdf_ilabels_, &h_arc_pdf_ilabels_[0],
e_count_ * sizeof(*d_arc_pdf_ilabels_), cudaMemcpyHostToDevice));
}
void CudaFst::Initialize(const fst::Fst<StdArc> &fst,
const TransitionModel *trans_model) {
nvtxRangePushA("CudaFst constructor");
start_ = fst.Start();
ComputeOffsets(fst);
AllocateData(fst);
// Temporarily allocating data for this vector
// We just need it during CSR generation. We will clear it
// at the end of Initialize
h_arc_pdf_ilabels_.resize(arc_count_);
PopulateArcs(fst);
if (trans_model) ApplyTransitionModelOnIlabels(*trans_model);
KALDI_ASSERT(d_e_offsets_);
KALDI_ASSERT(d_ne_offsets_);
KALDI_ASSERT(d_final_);
KALDI_ASSERT(d_arc_weights_);
KALDI_ASSERT(d_arc_nextstates_);
KALDI_ASSERT(d_arc_pdf_ilabels_);
CopyDataToDevice();
// Making sure the graph is ready
cudaDeviceSynchronize();
KALDI_DECODER_CUDA_CHECK_ERROR();
h_arc_pdf_ilabels_.clear(); // we don't need those on host
nvtxRangePop();
}
void CudaFst::Finalize() {
nvtxRangePushA("CudaFst destructor");
// Making sure that Initialize was called before Finalize
KALDI_ASSERT(d_e_offsets_ &&
"Please call CudaFst::Initialize() before calling Finalize()");
KALDI_ASSERT(d_ne_offsets_);
KALDI_ASSERT(d_final_);
KALDI_ASSERT(d_arc_weights_);
KALDI_ASSERT(d_arc_nextstates_);
KALDI_ASSERT(d_arc_pdf_ilabels_);
CuDevice::Instantiate().Free(d_e_offsets_);
CuDevice::Instantiate().Free(d_ne_offsets_);
CuDevice::Instantiate().Free(d_final_);
CuDevice::Instantiate().Free(d_arc_weights_);
CuDevice::Instantiate().Free(d_arc_nextstates_);
CuDevice::Instantiate().Free(d_arc_pdf_ilabels_);
nvtxRangePop();
}
} // end namespace cuda_decoder
} // end namespace kaldi
#endif // HAVE_CUDA == 1