Blame view
src/cudadecoder/thread-pool.h
4.95 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// cudadecoder/thread-pool.h // Source: https://github.com/progschj/ThreadPool // Modified to add a priority queue // Ubtained under this license: /* Copyright (c) 2012 Jakob Progsch, Václav Zeman This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef KALDI_CUDA_DECODER_THREAD_POOL_H_ #define KALDI_CUDA_DECODER_THREAD_POOL_H_ #include <condition_variable> #include <functional> #include <future> #include <memory> #include <mutex> #include <queue> #include <stdexcept> #include <thread> #include <vector> namespace kaldi { namespace cuda_decoder { // C++ indexes enum 0,1,2... enum ThreadPoolPriority { THREAD_POOL_LOW_PRIORITY, THREAD_POOL_NORMAL_PRIORITY, THREAD_POOL_HIGH_PRIORITY }; class ThreadPool { public: ThreadPool(size_t); template <class F, class... Args> auto enqueue(ThreadPoolPriority priority, F &&f, Args &&... args) -> std::future<typename std::result_of<F(Args...)>::type>; template <class F, class... Args> auto enqueue(F &&f, Args &&... args) -> std::future<typename std::result_of<F(Args...)>::type>; ~ThreadPool(); private: // need to keep track of threads so we can join them std::vector<std::thread> workers; // the task queue struct Task { std::function<void()> func; // Ordered first by priority, then FIFO order // tasks created first will have a higher priority_with_fifo.second std::pair<ThreadPoolPriority, long long> priority_with_fifo; }; friend bool operator<(const ThreadPool::Task &lhs, const ThreadPool::Task &rhs); std::priority_queue<Task> tasks; long long task_counter; // synchronization std::mutex queue_mutex; std::condition_variable condition; bool stop; }; inline bool operator<(const ThreadPool::Task &lhs, const ThreadPool::Task &rhs) { return lhs.priority_with_fifo < rhs.priority_with_fifo; } // the constructor just launches some amount of workers inline ThreadPool::ThreadPool(size_t threads) : task_counter(LONG_MAX), stop(false) { for (size_t i = 0; i < threads; ++i) workers.emplace_back([this] { for (;;) { Task task; { std::unique_lock<std::mutex> lock(this->queue_mutex); this->condition.wait( lock, [this] { return this->stop || !this->tasks.empty(); }); if (this->stop && this->tasks.empty()) return; if (!tasks.empty()) { task = std::move(this->tasks.top()); this->tasks.pop(); } } task.func(); } }); } // add new work item to the pool : normal priority template <class F, class... Args> auto ThreadPool::enqueue(F &&f, Args &&... args) -> std::future<typename std::result_of<F(Args...)>::type> { return enqueue(THREAD_POOL_NORMAL_PRIORITY, std::forward<F>(f), std::forward<Args>(args)...); } // add new work item to the pool template <class F, class... Args> auto ThreadPool::enqueue(ThreadPoolPriority priority, F &&f, Args &&... args) -> std::future<typename std::result_of<F(Args...)>::type> { using return_type = typename std::result_of<F(Args...)>::type; auto func = std::make_shared<std::packaged_task<return_type()>>( std::bind(std::forward<F>(f), std::forward<Args>(args)...)); std::future<return_type> res = func->get_future(); { std::unique_lock<std::mutex> lock(queue_mutex); // don't allow enqueueing after stopping the pool if (stop) throw std::runtime_error("enqueue on stopped ThreadPool"); Task task; task.func = [func]() { (*func)(); }; long long task_fifo_id = task_counter--; // The following if will temporarly break the FIFO order // (leading to a perf drop for a few seconds) // But it should trigger in ~50 million years if (task_counter == 0) task_counter = LONG_MAX; task.priority_with_fifo = {priority, task_fifo_id}; tasks.push(std::move(task)); } condition.notify_one(); return res; } // the destructor joins all threads inline ThreadPool::~ThreadPool() { { std::unique_lock<std::mutex> lock(queue_mutex); stop = true; } condition.notify_all(); for (std::thread &worker : workers) worker.join(); } } // end namespace cuda_decoder } // end namespace kaldi #endif // KALDI_CUDA_DECODER_THREAD_POOL_H_ |