thread-pool.h
4.95 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// cudadecoder/thread-pool.h
// Source: https://github.com/progschj/ThreadPool
// Modified to add a priority queue
// Ubtained under this license:
/*
Copyright (c) 2012 Jakob Progsch, Václav Zeman
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#ifndef KALDI_CUDA_DECODER_THREAD_POOL_H_
#define KALDI_CUDA_DECODER_THREAD_POOL_H_
#include <condition_variable>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <thread>
#include <vector>
namespace kaldi {
namespace cuda_decoder {
// C++ indexes enum 0,1,2...
enum ThreadPoolPriority { THREAD_POOL_LOW_PRIORITY, THREAD_POOL_NORMAL_PRIORITY, THREAD_POOL_HIGH_PRIORITY };
class ThreadPool {
public:
ThreadPool(size_t);
template <class F, class... Args>
auto enqueue(ThreadPoolPriority priority, F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
template <class F, class... Args>
auto enqueue(F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector<std::thread> workers;
// the task queue
struct Task {
std::function<void()> func;
// Ordered first by priority, then FIFO order
// tasks created first will have a higher priority_with_fifo.second
std::pair<ThreadPoolPriority, long long> priority_with_fifo;
};
friend bool operator<(const ThreadPool::Task &lhs,
const ThreadPool::Task &rhs);
std::priority_queue<Task> tasks;
long long task_counter;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
inline bool operator<(const ThreadPool::Task &lhs,
const ThreadPool::Task &rhs) {
return lhs.priority_with_fifo < rhs.priority_with_fifo;
}
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: task_counter(LONG_MAX), stop(false) {
for (size_t i = 0; i < threads; ++i)
workers.emplace_back([this] {
for (;;) {
Task task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(
lock, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty()) return;
if (!tasks.empty()) {
task = std::move(this->tasks.top());
this->tasks.pop();
}
}
task.func();
}
});
}
// add new work item to the pool : normal priority
template <class F, class... Args>
auto ThreadPool::enqueue(F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type> {
return enqueue(THREAD_POOL_NORMAL_PRIORITY, std::forward<F>(f), std::forward<Args>(args)...);
}
// add new work item to the pool
template <class F, class... Args>
auto ThreadPool::enqueue(ThreadPoolPriority priority, F &&f, Args &&... args)
-> std::future<typename std::result_of<F(Args...)>::type> {
using return_type = typename std::result_of<F(Args...)>::type;
auto func = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
std::future<return_type> res = func->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if (stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
Task task;
task.func = [func]() { (*func)(); };
long long task_fifo_id = task_counter--;
// The following if will temporarly break the FIFO order
// (leading to a perf drop for a few seconds)
// But it should trigger in ~50 million years
if (task_counter == 0) task_counter = LONG_MAX;
task.priority_with_fifo = {priority, task_fifo_id};
tasks.push(std::move(task));
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread &worker : workers)
worker.join();
}
} // end namespace cuda_decoder
} // end namespace kaldi
#endif // KALDI_CUDA_DECODER_THREAD_POOL_H_