Blame view
src/cudamatrix/cu-allocator.cc
23.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
// cudamatrix/cu-allocator.cc // Copyright 2015-2018 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "cudamatrix/cu-allocator.h" #if HAVE_CUDA == 1 #include <cublas_v2.h> #include <cuda.h> #include <cuda_runtime_api.h> #include <string> #include <vector> #include <algorithm> #ifndef _MSC_VER #include <dlfcn.h> #endif #include "cudamatrix/cu-common.h" #include "cudamatrix/cu-device.h" #include "cudamatrix/cu-matrix.h" #include "base/kaldi-error.h" #include "base/kaldi-utils.h" #include "util/common-utils.h" namespace kaldi { void* CuMemoryAllocator::Malloc(size_t size) { Timer tim; if (!opts_.cache_memory) { void *ans; CU_SAFE_CALL(cudaMalloc(&ans, size)); double elapsed = tim.Elapsed(); tot_time_taken_ += elapsed; malloc_time_taken_ += elapsed; t_++; return ans; } // We could perhaps change this to KALDI_PARANOID_ASSERT to save time. KALDI_ASSERT(size != 0); // Round up 'size' to a multiple of 256; this ensures the right kind of // memory alignment. size = (size + 255) & ~((size_t)255); void *ans = MallocInternal(size); tot_time_taken_ += tim.Elapsed(); return ans; } CuMemoryAllocator::MemoryBlock *CuMemoryAllocator::SplitBlock( MemoryBlock *block, size_t size) { SubRegion *subregion = block->subregion; // new_block will become the right-most part of 'block', and 'block' will // be the left-most part. MemoryBlock *new_block = new MemoryBlock; bool return_new_block; char *new_begin; // We now decide whether to make the left part of 'block' be of size ('size') // and return it (the 'if' branch of the if-else block below), or the right // part (the 'else' branch). We decide this based on heuristics. Basically, // we want to allocate the sub-block that's either next to the edge of the // MemoryRegion, or next to something that was allocated long ago (and which, // we assume won't be deallocated for a relatively long time). That is: we // want to leave the un-allocated memory next to a memory block that was // recently allocated (and thus is likely to be freed sooner), so that when // that block is freed we can merge it with the still-unallocated piece into a // larger block; this will reduce fragmentation. But if this block spans // multiple sub-regions we don't want to do that, as that would be against our // heuristic of, where possible, allocating memory from lower-numbered // sub-regions. // // Bear in mind that we can assume block->next and block->prev, if they are // non-NULL, are both currently allocated, since 'block' is un-allocated and // we would have merged any adjacent un-allocated sub-regions. if (block->next != NULL && block->prev != NULL && block->prev->t < block->next->t && block->next->subregion == subregion) { // We'll allocate the right part of the block, since the left side is next // to a relatively recently-allocated block. return_new_block = true; new_begin = block->end - size; } else { // We'll allocate the left part of the block. return_new_block = false; new_begin = block->begin + size; } // The following code makes sure the SubRegion for 'new_block' is correct, // i.e. its 'begin' is >= the 'begin' of the subregion and < the 'end' of the // subregion. If the following loop segfaults, it indicates a bug somewhere // else. while (new_begin >= subregion->end) subregion = subregion->next; MemoryBlock *next_block = block->next; new_block->begin = new_begin; new_block->end = block->end; new_block->subregion = subregion; new_block->allocated = false; new_block->thread_id = block->thread_id; new_block->t = block->t; new_block->next = next_block; new_block->prev = block; if (next_block) next_block->prev = new_block; block->next = new_block; block->end = new_begin; // Add the split-up piece that we won't be allocating, to the // 'free_blocks' member of its subregion. if (return_new_block) { AddToFreeBlocks(block); return new_block; } else { AddToFreeBlocks(new_block); return block; } } void CuMemoryAllocator::RemoveFromFreeBlocks(MemoryBlock *block) { SubRegion *subregion = block->subregion; size_t block_size = block->end - block->begin; std::pair<size_t, MemoryBlock*> p(block_size, block); size_t num_removed = subregion->free_blocks.erase(p); KALDI_ASSERT(num_removed != 0); // Update largest_free_block_, if needed. size_t subregion_index = subregion->subregion_index; if (block_size == largest_free_block_[subregion_index]) { if (subregion->free_blocks.empty()) largest_free_block_[subregion_index] = 0; else largest_free_block_[subregion_index] = subregion->free_blocks.begin()->first; } } void CuMemoryAllocator::AddToFreeBlocks(MemoryBlock *block) { SubRegion *subregion = block->subregion; KALDI_PARANOID_ASSERT(block->begin >= subregion->begin && block->begin < subregion->end); size_t block_size = block->end - block->begin, subregion_index = subregion->subregion_index; // Update largest_free_block_, if needed. if (block_size > largest_free_block_[subregion_index]) { largest_free_block_[subregion_index] = block_size; } subregion->free_blocks.insert(std::pair<size_t, MemoryBlock*>(block_size, block)); } void* CuMemoryAllocator::MallocFromSubregion(SubRegion *subregion, size_t size) { // NULL is implementation defined and doesn't have to be zero so we can't // guarantee that NULL will be <= a valid pointer-- so we cast to a pointer // from zero instead of using NULL. std::pair<size_t, MemoryBlock*> p(size, (MemoryBlock*)0); std::set<std::pair<size_t, MemoryBlock*> >::iterator iter = subregion->free_blocks.lower_bound(p); // so now 'iter' is the first member of free_blocks whose size_t value is >= // size. If 'iter' was equal to the end() of that multi_map, it would be a // bug because the calling code checked that the largest free block in this // region was sufficiently large. We don't check this; if it segfaults, we'll // debug. // search for a block that we don't have to synchronize on int max_iters = 20; auto search_iter = iter; for (int32 i = 0; search_iter != subregion->free_blocks.end() && i < max_iters; ++i, ++search_iter) { if (search_iter->second->thread_id == std::this_thread::get_id() || search_iter->second->t <= synchronize_gpu_t_) { iter = search_iter; break; } } MemoryBlock *block = iter->second; // Erase 'block' from its subregion's free blocks list... the next lines are // similar to RemoveFromFreeBlocks(), but we code it directly as we have the // iterator here, and it would be wasteful to do another lookup. subregion->free_blocks.erase(iter); // Update largest_free_block_, if needed. The following few lines of code also appear // in RemoveFromFreeBlocks(). size_t block_size = block->end - block->begin, subregion_index = subregion->subregion_index; if (block_size == largest_free_block_[subregion_index]) { if (subregion->free_blocks.empty()) largest_free_block_[subregion_index] = 0; else largest_free_block_[subregion_index] = subregion->free_blocks.begin()->first; } KALDI_PARANOID_ASSERT(block_size >= size && block->allocated == false); // the most memory we allow to be 'wasted' by failing to split a block, is the // smaller of: 1/16 of the size we're allocating, or half a megabyte. size_t allowed_extra_size = std::min<size_t>(size >> 4, 524288); if (block_size > size + allowed_extra_size) { // If the requested block is substantially larger than what was requested, // split it so we don't waste memory. block = SplitBlock(block, size); } if (std::this_thread::get_id() != block->thread_id && block->t > synchronize_gpu_t_) { // see NOTE ON SYNCHRONIZATION in the header. SynchronizeGpu(); synchronize_gpu_t_ = t_; num_synchronizations_++; } block->allocated = true; block->t = t_; allocated_block_map_[block->begin] = block; allocated_memory_ += (block->end - block->begin); if (allocated_memory_ > max_allocated_memory_) max_allocated_memory_ = allocated_memory_; return block->begin; } // By the time MallocInternal is called, we will have ensured that 'size' is // a nonzero multiple of 256 (for memory aligment reasons). // inline void* CuMemoryAllocator::MallocInternal(size_t size) { start: std::vector<size_t>::const_iterator iter = largest_free_block_.begin(), end = largest_free_block_.end(); size_t subregion_index = 0; for (; iter != end; ++iter, ++subregion_index) { if (*iter > size) { return MallocFromSubregion(subregions_[subregion_index], size); } } // We dropped off the loop without finding a subregion with enough memory // to satisfy the request -> allocate a new region. AllocateNewRegion(size); // An infinite loop shouldn't be possible because after calling // AllocateNewRegion(size), there should always be a SubRegion // with that size available. goto start; } // Returns max(0, floor(log_2(i))). Not tested independently. static inline size_t IntegerLog2(size_t i) { size_t ans = 0; while (i > 256) { i >>= 8; ans += 8; } while (i > 16) { i >>= 4; ans += 4; } while (i > 1) { i >>= 1; ans++; } return ans; } std::string GetFreeGpuMemory(int64* free, int64* total) { #ifdef _MSC_VER size_t mem_free, mem_total; cuMemGetInfo_v2(&mem_free, &mem_total); #else // define the function signature type size_t mem_free, mem_total; { // we will load cuMemGetInfo_v2 dynamically from libcuda.so // pre-fill ``safe'' values that will not cause problems mem_free = 1; mem_total = 1; // open libcuda.so void* libcuda = dlopen("libcuda.so", RTLD_LAZY); if (NULL == libcuda) { KALDI_WARN << "cannot open libcuda.so"; } else { // define the function signature type // and get the symbol typedef CUresult (*cu_fun_ptr)(size_t*, size_t*); cu_fun_ptr dl_cuMemGetInfo = (cu_fun_ptr)dlsym(libcuda,"cuMemGetInfo_v2"); if (NULL == dl_cuMemGetInfo) { KALDI_WARN << "cannot load cuMemGetInfo from libcuda.so"; } else { // call the function dl_cuMemGetInfo(&mem_free, &mem_total); } // close the library dlclose(libcuda); } } #endif // copy the output values outside if (NULL != free) *free = mem_free; if (NULL != total) *total = mem_total; // prepare the text output std::ostringstream os; os << "free:" << mem_free/(1024*1024) << "M, " << "used:" << (mem_total-mem_free)/(1024*1024) << "M, " << "total:" << mem_total/(1024*1024) << "M, " << "free/total:" << mem_free/(float)mem_total; return os.str(); } void CuMemoryAllocator::PrintMemoryUsage() const { if (!opts_.cache_memory) { KALDI_LOG << "Not caching allocations; time taken in " << "malloc/free is " << malloc_time_taken_ << "/" << (tot_time_taken_ - malloc_time_taken_) << ", num operations is " << t_ << "; device memory info: " << GetFreeGpuMemory(NULL, NULL); return; } size_t num_blocks_allocated = 0, num_blocks_free = 0, memory_allocated = 0, memory_held = 0, largest_free_block = 0, largest_allocated_block = 0; for (size_t i = 0; i < memory_regions_.size(); i++) { MemoryBlock *m = memory_regions_[i].block_begin; KALDI_ASSERT(m->begin == memory_regions_[i].begin); for (; m != NULL; m = m->next) { size_t size = m->end - m->begin; if (m->allocated) { num_blocks_allocated++; memory_allocated += size; if (size > largest_allocated_block) largest_allocated_block = size; } else { num_blocks_free++; if (size > largest_free_block) largest_free_block = size; } memory_held += size; // The following is just some sanity checks; this code is rarely called so // it's a reasonable place to put them. if (m->next) { KALDI_ASSERT(m->next->prev == m && m->end == m->next->begin); } else { KALDI_ASSERT(m->end == memory_regions_[m->subregion->memory_region].end); } } } KALDI_LOG << "Memory usage: " << memory_allocated << "/" << memory_held << " bytes currently allocated/total-held; " << num_blocks_allocated << "/" << num_blocks_free << " blocks currently allocated/free; largest " << "free/allocated block sizes are " << largest_allocated_block << "/" << largest_free_block << "; time taken total/cudaMalloc is " << tot_time_taken_ << "/" << malloc_time_taken_ << ", synchronized the GPU " << num_synchronizations_ << " times out of " << (t_/2) << " frees; " << "device memory info: " << GetFreeGpuMemory(NULL, NULL) << "maximum allocated: " << max_allocated_memory_ << "current allocated: " << allocated_memory_; } // Note: we just initialize with the default options, but we can change it later // (as long as it's before we first use the class) by calling SetOptions(). CuMemoryAllocator::CuMemoryAllocator(): opts_(CuAllocatorOptions()), t_(0), synchronize_gpu_t_(0), num_synchronizations_(0), tot_time_taken_(0.0), malloc_time_taken_(0.0), max_allocated_memory_(0), allocated_memory_(0) { // Note: we don't allocate any memory regions at the start; we wait for the user // to call Malloc() or MallocPitch(), and then allocate one when needed. } void* CuMemoryAllocator::MallocPitch(size_t row_bytes, size_t num_rows, size_t *pitch) { Timer tim; if (!opts_.cache_memory) { void *ans; CU_SAFE_CALL(cudaMallocPitch(&ans, pitch, row_bytes, num_rows)); double elapsed = tim.Elapsed(); tot_time_taken_ += elapsed; malloc_time_taken_ += elapsed; return ans; } // Round up row_bytes to a multiple of 256. row_bytes = (row_bytes + 255) & ~((size_t)255); *pitch = row_bytes; void *ans = MallocInternal(row_bytes * num_rows); tot_time_taken_ += tim.Elapsed(); return ans; } void CuMemoryAllocator::Free(void *ptr) { Timer tim; if (!opts_.cache_memory) { CU_SAFE_CALL(cudaFree(ptr)); tot_time_taken_ += tim.Elapsed(); t_++; return; } t_++; unordered_map<void*, MemoryBlock*>::iterator iter = allocated_block_map_.find(ptr); if (iter == allocated_block_map_.end()) { KALDI_ERR << "Attempt to free CUDA memory pointer that was not allocated: " << ptr; } MemoryBlock *block = iter->second; allocated_memory_ -= (block->end - block->begin); allocated_block_map_.erase(iter); block->t = t_; block->thread_id = std::this_thread::get_id(); block->allocated = false; // If this is not the first block of the memory region and the previous block // is not allocated, merge this block into the previous block. MemoryBlock *prev_block = block->prev; if (prev_block != NULL && !prev_block->allocated) { RemoveFromFreeBlocks(prev_block); prev_block->end = block->end; if (prev_block->thread_id != block->thread_id) { // the two blocks we're merging were freed by different threads, so we // give the 'nonexistent thread' as their thread, which means that // whichever thread requests that block, we force synchronization. We can // assume that prev_block was previously allocated (prev_block->t > 0) // because we always start from the left when allocating blocks, and we // know that this block was previously allocated. prev_block->thread_id = std::thread::id(); } prev_block->t = t_; prev_block->next = block->next; if (block->next) block->next->prev = prev_block; delete block; block = prev_block; } // If this is not the last block of the memory region and the next block is // not allocated, merge the next block into this block. MemoryBlock *next_block = block->next; if (next_block != NULL && !next_block->allocated) { // merge next_block into 'block', deleting 'next_block'. Note: at this // point, if we merged with the previous block, the variable 'block' may now // be pointing to that previous block, so it would be a 3-way merge. RemoveFromFreeBlocks(next_block); block->end = next_block->end; if (next_block->thread_id != block->thread_id && next_block->t > 0) { // the two blocks we're merging were freed by different threads, so we // give the 'nonexistent thread' as their thread, which means that // whichever thread requests that block, we force synchronization. there // is no need to do this if next_block->t == 0, which would mean it had // never been allocated. block->thread_id = std::thread::id(); } // We don't need to inspect the 't' value of next_block; it can't be // larger than t_ because t_ is now. block->next = next_block->next; if (block->next) block->next->prev = block; delete next_block; } AddToFreeBlocks(block); tot_time_taken_ += tim.Elapsed(); } void CuMemoryAllocator::AllocateNewRegion(size_t size) { int64 free_memory, total_memory; std::string mem_info = GetFreeGpuMemory(&free_memory, &total_memory); opts_.Check(); size_t region_size = static_cast<size_t>(free_memory * opts_.memory_proportion); if (region_size < size) region_size = size; // Round up region_size to an exact multiple of 1M (note: we expect it will // be much larger than that). 1048575 is 2^20 - 1. region_size = (region_size + 1048575) & ~((size_t)1048575); if (!memory_regions_.empty()) { // If this is not the first region allocated, print some information. KALDI_LOG << "About to allocate new memory region of " << region_size << " bytes; current memory info is: " << mem_info; } void *memory_region; cudaError_t e; { Timer tim; e = cudaMalloc(&memory_region, region_size); malloc_time_taken_ += tim.Elapsed(); } if (e != cudaSuccess) { PrintMemoryUsage(); if (!CuDevice::Instantiate().IsComputeExclusive()) { KALDI_ERR << "Failed to allocate a memory region of " << region_size << " bytes. Possibly this is due to sharing the GPU. Try " << "switching the GPUs to exclusive mode (nvidia-smi -c 3) and using " << "the option --use-gpu=wait to scripts like " << "steps/nnet3/chain/train.py. Memory info: " << mem_info << " CUDA error: '" << cudaGetErrorString(e) << "'"; } else { KALDI_ERR << "Failed to allocate a memory region of " << region_size << " bytes. Possibly smaller minibatch size would help. " << "Memory info: " << mem_info << " CUDA error: '" << cudaGetErrorString(e) << "'"; } } // this_num_subregions would be approximately 'opts_.num_subregions' if // 'region_size' was all the device's memory. (We add one to round up). // We're aiming to get a number of sub-regions approximately equal to // opts_.num_subregions by the time we allocate all the device's memory. size_t this_num_subregions = 1 + (region_size * opts_.num_subregions) / total_memory; size_t memory_region_index = memory_regions_.size(); memory_regions_.resize(memory_region_index + 1); MemoryRegion &this_region = memory_regions_.back(); this_region.begin = static_cast<char*>(memory_region); this_region.end = this_region.begin + region_size; // subregion_size will be hundreds of megabytes. size_t subregion_size = region_size / this_num_subregions; std::vector<SubRegion*> new_subregions; char* subregion_begin = static_cast<char*>(memory_region); for (size_t i = 0; i < this_num_subregions; i++) { SubRegion *subregion = new SubRegion(); subregion->memory_region = memory_region_index; subregion->begin = subregion_begin; if (i + 1 == this_num_subregions) { subregion->end = this_region.end; KALDI_ASSERT(subregion->end > subregion->begin); } else { subregion->end = subregion_begin + subregion_size; subregion_begin = subregion->end; } subregion->next = NULL; if (i > 0) { new_subregions.back()->next = subregion; } new_subregions.push_back(subregion); } // Initially the memory is in a single block, owned by // the first subregion. It will be split up gradually. MemoryBlock *block = new MemoryBlock(); block->begin = this_region.begin; block->end = this_region.end; block->subregion = new_subregions.front(); block->allocated = false; block->t = 0; // was never allocated. block->next = NULL; block->prev = NULL; for (size_t i = 0; i < this_num_subregions; i++) subregions_.push_back(new_subregions[i]); SortSubregions(); this_region.block_begin = block; AddToFreeBlocks(block); } // We sort the sub-regions according to the distance between the start of the // MemoryRegion of which they are a part, and the start of the SubRegion. This // will generally mean that the highest-numbered SubRegion-- the one we keep // free at all costs-- will be the end of the first block which we allocated // (which under most situations will be the largest block). void CuMemoryAllocator::SortSubregions() { largest_free_block_.resize(subregions_.size()); std::vector<std::pair<size_t, SubRegion*> > pairs; for (size_t i = 0; i < subregions_.size(); i++) { SubRegion *subregion = subregions_[i]; MemoryRegion &memory_region = memory_regions_[subregion->memory_region]; size_t distance = subregion->begin - memory_region.begin; pairs.push_back(std::pair<size_t, SubRegion*>(distance, subregion)); } std::sort(pairs.begin(), pairs.end()); for (size_t i = 0; i < subregions_.size(); i++) { subregions_[i] = pairs[i].second; subregions_[i]->subregion_index = i; if (subregions_[i]->free_blocks.empty()) largest_free_block_[i] = 0; else largest_free_block_[i] = subregions_[i]->free_blocks.begin()->first; } } CuMemoryAllocator::~CuMemoryAllocator() { // We mainly free these blocks of memory so that cuda-memcheck doesn't report // spurious errors. for (size_t i = 0; i < memory_regions_.size(); i++) { // No need to check the return status here-- the program is exiting anyway. cudaFree(memory_regions_[i].begin); } for (size_t i = 0; i < subregions_.size(); i++) { SubRegion *subregion = subregions_[i]; for (auto iter = subregion->free_blocks.begin(); iter != subregion->free_blocks.end(); ++iter) delete iter->second; delete subregion; } } CuMemoryAllocator g_cuda_allocator; } // namespace kaldi #endif // HAVE_CUDA namespace kaldi { // Define/initialize this global variable. It was declared in cu-allocator.h. // This has to be done outside of the ifdef, because we register the options // whether or not CUDA is compiled in (so that the binaries accept the same // options). CuAllocatorOptions g_allocator_options; } |