cu-allocator.cc
23.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// cudamatrix/cu-allocator.cc
// Copyright 2015-2018 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "cudamatrix/cu-allocator.h"
#if HAVE_CUDA == 1
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <string>
#include <vector>
#include <algorithm>
#ifndef _MSC_VER
#include <dlfcn.h>
#endif
#include "cudamatrix/cu-common.h"
#include "cudamatrix/cu-device.h"
#include "cudamatrix/cu-matrix.h"
#include "base/kaldi-error.h"
#include "base/kaldi-utils.h"
#include "util/common-utils.h"
namespace kaldi {
void* CuMemoryAllocator::Malloc(size_t size) {
Timer tim;
if (!opts_.cache_memory) {
void *ans;
CU_SAFE_CALL(cudaMalloc(&ans, size));
double elapsed = tim.Elapsed();
tot_time_taken_ += elapsed;
malloc_time_taken_ += elapsed;
t_++;
return ans;
}
// We could perhaps change this to KALDI_PARANOID_ASSERT to save time.
KALDI_ASSERT(size != 0);
// Round up 'size' to a multiple of 256; this ensures the right kind of
// memory alignment.
size = (size + 255) & ~((size_t)255);
void *ans = MallocInternal(size);
tot_time_taken_ += tim.Elapsed();
return ans;
}
CuMemoryAllocator::MemoryBlock *CuMemoryAllocator::SplitBlock(
MemoryBlock *block, size_t size) {
SubRegion *subregion = block->subregion;
// new_block will become the right-most part of 'block', and 'block' will
// be the left-most part.
MemoryBlock *new_block = new MemoryBlock;
bool return_new_block;
char *new_begin;
// We now decide whether to make the left part of 'block' be of size ('size')
// and return it (the 'if' branch of the if-else block below), or the right
// part (the 'else' branch). We decide this based on heuristics. Basically,
// we want to allocate the sub-block that's either next to the edge of the
// MemoryRegion, or next to something that was allocated long ago (and which,
// we assume won't be deallocated for a relatively long time). That is: we
// want to leave the un-allocated memory next to a memory block that was
// recently allocated (and thus is likely to be freed sooner), so that when
// that block is freed we can merge it with the still-unallocated piece into a
// larger block; this will reduce fragmentation. But if this block spans
// multiple sub-regions we don't want to do that, as that would be against our
// heuristic of, where possible, allocating memory from lower-numbered
// sub-regions.
//
// Bear in mind that we can assume block->next and block->prev, if they are
// non-NULL, are both currently allocated, since 'block' is un-allocated and
// we would have merged any adjacent un-allocated sub-regions.
if (block->next != NULL && block->prev != NULL &&
block->prev->t < block->next->t &&
block->next->subregion == subregion) {
// We'll allocate the right part of the block, since the left side is next
// to a relatively recently-allocated block.
return_new_block = true;
new_begin = block->end - size;
} else {
// We'll allocate the left part of the block.
return_new_block = false;
new_begin = block->begin + size;
}
// The following code makes sure the SubRegion for 'new_block' is correct,
// i.e. its 'begin' is >= the 'begin' of the subregion and < the 'end' of the
// subregion. If the following loop segfaults, it indicates a bug somewhere
// else.
while (new_begin >= subregion->end)
subregion = subregion->next;
MemoryBlock *next_block = block->next;
new_block->begin = new_begin;
new_block->end = block->end;
new_block->subregion = subregion;
new_block->allocated = false;
new_block->thread_id = block->thread_id;
new_block->t = block->t;
new_block->next = next_block;
new_block->prev = block;
if (next_block)
next_block->prev = new_block;
block->next = new_block;
block->end = new_begin;
// Add the split-up piece that we won't be allocating, to the
// 'free_blocks' member of its subregion.
if (return_new_block) {
AddToFreeBlocks(block);
return new_block;
} else {
AddToFreeBlocks(new_block);
return block;
}
}
void CuMemoryAllocator::RemoveFromFreeBlocks(MemoryBlock *block) {
SubRegion *subregion = block->subregion;
size_t block_size = block->end - block->begin;
std::pair<size_t, MemoryBlock*> p(block_size, block);
size_t num_removed = subregion->free_blocks.erase(p);
KALDI_ASSERT(num_removed != 0);
// Update largest_free_block_, if needed.
size_t subregion_index = subregion->subregion_index;
if (block_size == largest_free_block_[subregion_index]) {
if (subregion->free_blocks.empty())
largest_free_block_[subregion_index] = 0;
else
largest_free_block_[subregion_index] =
subregion->free_blocks.begin()->first;
}
}
void CuMemoryAllocator::AddToFreeBlocks(MemoryBlock *block) {
SubRegion *subregion = block->subregion;
KALDI_PARANOID_ASSERT(block->begin >= subregion->begin &&
block->begin < subregion->end);
size_t block_size = block->end - block->begin,
subregion_index = subregion->subregion_index;
// Update largest_free_block_, if needed.
if (block_size > largest_free_block_[subregion_index]) {
largest_free_block_[subregion_index] = block_size;
}
subregion->free_blocks.insert(std::pair<size_t, MemoryBlock*>(block_size, block));
}
void* CuMemoryAllocator::MallocFromSubregion(SubRegion *subregion,
size_t size) {
// NULL is implementation defined and doesn't have to be zero so we can't
// guarantee that NULL will be <= a valid pointer-- so we cast to a pointer
// from zero instead of using NULL.
std::pair<size_t, MemoryBlock*> p(size, (MemoryBlock*)0);
std::set<std::pair<size_t, MemoryBlock*> >::iterator iter =
subregion->free_blocks.lower_bound(p);
// so now 'iter' is the first member of free_blocks whose size_t value is >=
// size. If 'iter' was equal to the end() of that multi_map, it would be a
// bug because the calling code checked that the largest free block in this
// region was sufficiently large. We don't check this; if it segfaults, we'll
// debug.
// search for a block that we don't have to synchronize on
int max_iters = 20;
auto search_iter = iter;
for (int32 i = 0;
search_iter != subregion->free_blocks.end() && i < max_iters;
++i, ++search_iter) {
if (search_iter->second->thread_id == std::this_thread::get_id() ||
search_iter->second->t <= synchronize_gpu_t_) {
iter = search_iter;
break;
}
}
MemoryBlock *block = iter->second;
// Erase 'block' from its subregion's free blocks list... the next lines are
// similar to RemoveFromFreeBlocks(), but we code it directly as we have the
// iterator here, and it would be wasteful to do another lookup.
subregion->free_blocks.erase(iter);
// Update largest_free_block_, if needed. The following few lines of code also appear
// in RemoveFromFreeBlocks().
size_t block_size = block->end - block->begin,
subregion_index = subregion->subregion_index;
if (block_size == largest_free_block_[subregion_index]) {
if (subregion->free_blocks.empty())
largest_free_block_[subregion_index] = 0;
else
largest_free_block_[subregion_index] =
subregion->free_blocks.begin()->first;
}
KALDI_PARANOID_ASSERT(block_size >= size && block->allocated == false);
// the most memory we allow to be 'wasted' by failing to split a block, is the
// smaller of: 1/16 of the size we're allocating, or half a megabyte.
size_t allowed_extra_size = std::min<size_t>(size >> 4, 524288);
if (block_size > size + allowed_extra_size) {
// If the requested block is substantially larger than what was requested,
// split it so we don't waste memory.
block = SplitBlock(block, size);
}
if (std::this_thread::get_id() != block->thread_id &&
block->t > synchronize_gpu_t_) {
// see NOTE ON SYNCHRONIZATION in the header.
SynchronizeGpu();
synchronize_gpu_t_ = t_;
num_synchronizations_++;
}
block->allocated = true;
block->t = t_;
allocated_block_map_[block->begin] = block;
allocated_memory_ += (block->end - block->begin);
if (allocated_memory_ > max_allocated_memory_)
max_allocated_memory_ = allocated_memory_;
return block->begin;
}
// By the time MallocInternal is called, we will have ensured that 'size' is
// a nonzero multiple of 256 (for memory aligment reasons).
// inline
void* CuMemoryAllocator::MallocInternal(size_t size) {
start:
std::vector<size_t>::const_iterator iter = largest_free_block_.begin(),
end = largest_free_block_.end();
size_t subregion_index = 0;
for (; iter != end; ++iter, ++subregion_index) {
if (*iter > size) {
return MallocFromSubregion(subregions_[subregion_index], size);
}
}
// We dropped off the loop without finding a subregion with enough memory
// to satisfy the request -> allocate a new region.
AllocateNewRegion(size);
// An infinite loop shouldn't be possible because after calling
// AllocateNewRegion(size), there should always be a SubRegion
// with that size available.
goto start;
}
// Returns max(0, floor(log_2(i))). Not tested independently.
static inline size_t IntegerLog2(size_t i) {
size_t ans = 0;
while (i > 256) {
i >>= 8;
ans += 8;
}
while (i > 16) {
i >>= 4;
ans += 4;
}
while (i > 1) {
i >>= 1;
ans++;
}
return ans;
}
std::string GetFreeGpuMemory(int64* free, int64* total) {
#ifdef _MSC_VER
size_t mem_free, mem_total;
cuMemGetInfo_v2(&mem_free, &mem_total);
#else
// define the function signature type
size_t mem_free, mem_total;
{
// we will load cuMemGetInfo_v2 dynamically from libcuda.so
// pre-fill ``safe'' values that will not cause problems
mem_free = 1; mem_total = 1;
// open libcuda.so
void* libcuda = dlopen("libcuda.so", RTLD_LAZY);
if (NULL == libcuda) {
KALDI_WARN << "cannot open libcuda.so";
} else {
// define the function signature type
// and get the symbol
typedef CUresult (*cu_fun_ptr)(size_t*, size_t*);
cu_fun_ptr dl_cuMemGetInfo = (cu_fun_ptr)dlsym(libcuda,"cuMemGetInfo_v2");
if (NULL == dl_cuMemGetInfo) {
KALDI_WARN << "cannot load cuMemGetInfo from libcuda.so";
} else {
// call the function
dl_cuMemGetInfo(&mem_free, &mem_total);
}
// close the library
dlclose(libcuda);
}
}
#endif
// copy the output values outside
if (NULL != free) *free = mem_free;
if (NULL != total) *total = mem_total;
// prepare the text output
std::ostringstream os;
os << "free:" << mem_free/(1024*1024) << "M, "
<< "used:" << (mem_total-mem_free)/(1024*1024) << "M, "
<< "total:" << mem_total/(1024*1024) << "M, "
<< "free/total:" << mem_free/(float)mem_total;
return os.str();
}
void CuMemoryAllocator::PrintMemoryUsage() const {
if (!opts_.cache_memory) {
KALDI_LOG << "Not caching allocations; time taken in "
<< "malloc/free is " << malloc_time_taken_
<< "/" << (tot_time_taken_ - malloc_time_taken_)
<< ", num operations is " << t_
<< "; device memory info: "
<< GetFreeGpuMemory(NULL, NULL);
return;
}
size_t num_blocks_allocated = 0, num_blocks_free = 0,
memory_allocated = 0, memory_held = 0,
largest_free_block = 0, largest_allocated_block = 0;
for (size_t i = 0; i < memory_regions_.size(); i++) {
MemoryBlock *m = memory_regions_[i].block_begin;
KALDI_ASSERT(m->begin == memory_regions_[i].begin);
for (; m != NULL; m = m->next) {
size_t size = m->end - m->begin;
if (m->allocated) {
num_blocks_allocated++;
memory_allocated += size;
if (size > largest_allocated_block)
largest_allocated_block = size;
} else {
num_blocks_free++;
if (size > largest_free_block)
largest_free_block = size;
}
memory_held += size;
// The following is just some sanity checks; this code is rarely called so
// it's a reasonable place to put them.
if (m->next) {
KALDI_ASSERT(m->next->prev == m && m->end == m->next->begin);
} else {
KALDI_ASSERT(m->end == memory_regions_[m->subregion->memory_region].end);
}
}
}
KALDI_LOG << "Memory usage: " << memory_allocated << "/"
<< memory_held << " bytes currently allocated/total-held; "
<< num_blocks_allocated << "/" << num_blocks_free
<< " blocks currently allocated/free; largest "
<< "free/allocated block sizes are "
<< largest_allocated_block << "/" << largest_free_block
<< "; time taken total/cudaMalloc is "
<< tot_time_taken_ << "/" << malloc_time_taken_
<< ", synchronized the GPU " << num_synchronizations_
<< " times out of " << (t_/2) << " frees; "
<< "device memory info: " << GetFreeGpuMemory(NULL, NULL)
<< "maximum allocated: " << max_allocated_memory_
<< "current allocated: " << allocated_memory_;
}
// Note: we just initialize with the default options, but we can change it later
// (as long as it's before we first use the class) by calling SetOptions().
CuMemoryAllocator::CuMemoryAllocator():
opts_(CuAllocatorOptions()),
t_(0),
synchronize_gpu_t_(0),
num_synchronizations_(0),
tot_time_taken_(0.0),
malloc_time_taken_(0.0),
max_allocated_memory_(0),
allocated_memory_(0) {
// Note: we don't allocate any memory regions at the start; we wait for the user
// to call Malloc() or MallocPitch(), and then allocate one when needed.
}
void* CuMemoryAllocator::MallocPitch(size_t row_bytes,
size_t num_rows,
size_t *pitch) {
Timer tim;
if (!opts_.cache_memory) {
void *ans;
CU_SAFE_CALL(cudaMallocPitch(&ans, pitch, row_bytes, num_rows));
double elapsed = tim.Elapsed();
tot_time_taken_ += elapsed;
malloc_time_taken_ += elapsed;
return ans;
}
// Round up row_bytes to a multiple of 256.
row_bytes = (row_bytes + 255) & ~((size_t)255);
*pitch = row_bytes;
void *ans = MallocInternal(row_bytes * num_rows);
tot_time_taken_ += tim.Elapsed();
return ans;
}
void CuMemoryAllocator::Free(void *ptr) {
Timer tim;
if (!opts_.cache_memory) {
CU_SAFE_CALL(cudaFree(ptr));
tot_time_taken_ += tim.Elapsed();
t_++;
return;
}
t_++;
unordered_map<void*, MemoryBlock*>::iterator iter =
allocated_block_map_.find(ptr);
if (iter == allocated_block_map_.end()) {
KALDI_ERR << "Attempt to free CUDA memory pointer that was not allocated: "
<< ptr;
}
MemoryBlock *block = iter->second;
allocated_memory_ -= (block->end - block->begin);
allocated_block_map_.erase(iter);
block->t = t_;
block->thread_id = std::this_thread::get_id();
block->allocated = false;
// If this is not the first block of the memory region and the previous block
// is not allocated, merge this block into the previous block.
MemoryBlock *prev_block = block->prev;
if (prev_block != NULL && !prev_block->allocated) {
RemoveFromFreeBlocks(prev_block);
prev_block->end = block->end;
if (prev_block->thread_id != block->thread_id) {
// the two blocks we're merging were freed by different threads, so we
// give the 'nonexistent thread' as their thread, which means that
// whichever thread requests that block, we force synchronization. We can
// assume that prev_block was previously allocated (prev_block->t > 0)
// because we always start from the left when allocating blocks, and we
// know that this block was previously allocated.
prev_block->thread_id = std::thread::id();
}
prev_block->t = t_;
prev_block->next = block->next;
if (block->next)
block->next->prev = prev_block;
delete block;
block = prev_block;
}
// If this is not the last block of the memory region and the next block is
// not allocated, merge the next block into this block.
MemoryBlock *next_block = block->next;
if (next_block != NULL && !next_block->allocated) {
// merge next_block into 'block', deleting 'next_block'. Note: at this
// point, if we merged with the previous block, the variable 'block' may now
// be pointing to that previous block, so it would be a 3-way merge.
RemoveFromFreeBlocks(next_block);
block->end = next_block->end;
if (next_block->thread_id != block->thread_id && next_block->t > 0) {
// the two blocks we're merging were freed by different threads, so we
// give the 'nonexistent thread' as their thread, which means that
// whichever thread requests that block, we force synchronization. there
// is no need to do this if next_block->t == 0, which would mean it had
// never been allocated.
block->thread_id = std::thread::id();
}
// We don't need to inspect the 't' value of next_block; it can't be
// larger than t_ because t_ is now.
block->next = next_block->next;
if (block->next)
block->next->prev = block;
delete next_block;
}
AddToFreeBlocks(block);
tot_time_taken_ += tim.Elapsed();
}
void CuMemoryAllocator::AllocateNewRegion(size_t size) {
int64 free_memory, total_memory;
std::string mem_info = GetFreeGpuMemory(&free_memory, &total_memory);
opts_.Check();
size_t region_size = static_cast<size_t>(free_memory * opts_.memory_proportion);
if (region_size < size)
region_size = size;
// Round up region_size to an exact multiple of 1M (note: we expect it will
// be much larger than that). 1048575 is 2^20 - 1.
region_size = (region_size + 1048575) & ~((size_t)1048575);
if (!memory_regions_.empty()) {
// If this is not the first region allocated, print some information.
KALDI_LOG << "About to allocate new memory region of " << region_size
<< " bytes; current memory info is: " << mem_info;
}
void *memory_region;
cudaError_t e;
{
Timer tim;
e = cudaMalloc(&memory_region, region_size);
malloc_time_taken_ += tim.Elapsed();
}
if (e != cudaSuccess) {
PrintMemoryUsage();
if (!CuDevice::Instantiate().IsComputeExclusive()) {
KALDI_ERR << "Failed to allocate a memory region of " << region_size
<< " bytes. Possibly this is due to sharing the GPU. Try "
<< "switching the GPUs to exclusive mode (nvidia-smi -c 3) and using "
<< "the option --use-gpu=wait to scripts like "
<< "steps/nnet3/chain/train.py. Memory info: "
<< mem_info
<< " CUDA error: '" << cudaGetErrorString(e) << "'";
} else {
KALDI_ERR << "Failed to allocate a memory region of " << region_size
<< " bytes. Possibly smaller minibatch size would help. "
<< "Memory info: " << mem_info
<< " CUDA error: '" << cudaGetErrorString(e) << "'";
}
}
// this_num_subregions would be approximately 'opts_.num_subregions' if
// 'region_size' was all the device's memory. (We add one to round up).
// We're aiming to get a number of sub-regions approximately equal to
// opts_.num_subregions by the time we allocate all the device's memory.
size_t this_num_subregions = 1 +
(region_size * opts_.num_subregions) / total_memory;
size_t memory_region_index = memory_regions_.size();
memory_regions_.resize(memory_region_index + 1);
MemoryRegion &this_region = memory_regions_.back();
this_region.begin = static_cast<char*>(memory_region);
this_region.end = this_region.begin + region_size;
// subregion_size will be hundreds of megabytes.
size_t subregion_size = region_size / this_num_subregions;
std::vector<SubRegion*> new_subregions;
char* subregion_begin = static_cast<char*>(memory_region);
for (size_t i = 0; i < this_num_subregions; i++) {
SubRegion *subregion = new SubRegion();
subregion->memory_region = memory_region_index;
subregion->begin = subregion_begin;
if (i + 1 == this_num_subregions) {
subregion->end = this_region.end;
KALDI_ASSERT(subregion->end > subregion->begin);
} else {
subregion->end = subregion_begin + subregion_size;
subregion_begin = subregion->end;
}
subregion->next = NULL;
if (i > 0) {
new_subregions.back()->next = subregion;
}
new_subregions.push_back(subregion);
}
// Initially the memory is in a single block, owned by
// the first subregion. It will be split up gradually.
MemoryBlock *block = new MemoryBlock();
block->begin = this_region.begin;
block->end = this_region.end;
block->subregion = new_subregions.front();
block->allocated = false;
block->t = 0; // was never allocated.
block->next = NULL;
block->prev = NULL;
for (size_t i = 0; i < this_num_subregions; i++)
subregions_.push_back(new_subregions[i]);
SortSubregions();
this_region.block_begin = block;
AddToFreeBlocks(block);
}
// We sort the sub-regions according to the distance between the start of the
// MemoryRegion of which they are a part, and the start of the SubRegion. This
// will generally mean that the highest-numbered SubRegion-- the one we keep
// free at all costs-- will be the end of the first block which we allocated
// (which under most situations will be the largest block).
void CuMemoryAllocator::SortSubregions() {
largest_free_block_.resize(subregions_.size());
std::vector<std::pair<size_t, SubRegion*> > pairs;
for (size_t i = 0; i < subregions_.size(); i++) {
SubRegion *subregion = subregions_[i];
MemoryRegion &memory_region = memory_regions_[subregion->memory_region];
size_t distance = subregion->begin - memory_region.begin;
pairs.push_back(std::pair<size_t, SubRegion*>(distance, subregion));
}
std::sort(pairs.begin(), pairs.end());
for (size_t i = 0; i < subregions_.size(); i++) {
subregions_[i] = pairs[i].second;
subregions_[i]->subregion_index = i;
if (subregions_[i]->free_blocks.empty())
largest_free_block_[i] = 0;
else
largest_free_block_[i] = subregions_[i]->free_blocks.begin()->first;
}
}
CuMemoryAllocator::~CuMemoryAllocator() {
// We mainly free these blocks of memory so that cuda-memcheck doesn't report
// spurious errors.
for (size_t i = 0; i < memory_regions_.size(); i++) {
// No need to check the return status here-- the program is exiting anyway.
cudaFree(memory_regions_[i].begin);
}
for (size_t i = 0; i < subregions_.size(); i++) {
SubRegion *subregion = subregions_[i];
for (auto iter = subregion->free_blocks.begin();
iter != subregion->free_blocks.end(); ++iter)
delete iter->second;
delete subregion;
}
}
CuMemoryAllocator g_cuda_allocator;
} // namespace kaldi
#endif // HAVE_CUDA
namespace kaldi {
// Define/initialize this global variable. It was declared in cu-allocator.h.
// This has to be done outside of the ifdef, because we register the options
// whether or not CUDA is compiled in (so that the binaries accept the same
// options).
CuAllocatorOptions g_allocator_options;
}