Blame view
src/cudamatrix/cu-block-matrix.cc
11.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
// cudamatrix/cu-block-matrix.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #if HAVE_CUDA == 1 #include <cuda_runtime_api.h> #include <cublas_v2.h> #endif #include <algorithm> #include "base/timer.h" #include "cudamatrix/cu-block-matrix.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-device.h" namespace kaldi { template<class Real> CuBlockMatrix<Real>::CuBlockMatrix() { #if HAVE_CUDA == 1 cu_data_ = NULL; #endif } template<class Real> CuBlockMatrix<Real>::CuBlockMatrix(const std::vector<CuMatrix<Real> >&data) { #if HAVE_CUDA == 1 cu_data_ = NULL; #endif block_data_.resize(data.size()); MatrixIndexT row_offset = 0, col_offset = 0, max_num_rows = 0; for (size_t b = 0; b < data.size(); b++) { MatrixIndexT num_rows = data[b].NumRows(), num_cols = data[b].NumCols(); KALDI_ASSERT(num_rows > 0 && num_cols > 0); BlockMatrixData block_data; block_data.num_rows = num_rows; block_data.num_cols = num_cols; block_data.row_offset = row_offset; block_data.col_offset = col_offset; row_offset += num_rows; col_offset += num_cols; max_num_rows = std::max(max_num_rows, num_rows); block_data_[b] = block_data; } num_rows_ = row_offset; data_.Resize(max_num_rows, col_offset); for (int32 b = 0; b < NumBlocks(); b++) Block(b).CopyFromMat(data[b]); SetCudaData(); } template<class Real> const CuSubMatrix<Real> CuBlockMatrix<Real>::Block(int32 b) const { KALDI_ASSERT(static_cast<size_t>(b) < block_data_.size()); const BlockMatrixData &block_data = block_data_[b]; return CuSubMatrix<Real>(data_, 0, block_data.num_rows, block_data.col_offset, block_data.num_cols); } template<class Real> CuSubMatrix<Real> CuBlockMatrix<Real>::Block(int32 b) { KALDI_ASSERT(static_cast<size_t>(b) < block_data_.size()); BlockMatrixData &block_data = block_data_[b]; return CuSubMatrix<Real>(data_, 0, block_data.num_rows, block_data.col_offset, block_data.num_cols); } template<class Real> CuBlockMatrix<Real>::CuBlockMatrix(const CuBlockMatrix<Real> &other): data_(other.data_), block_data_(other.block_data_), num_rows_(other.num_rows_) { #if HAVE_CUDA == 1 cu_data_ = NULL; #endif SetCudaData(); } template<class Real> CuBlockMatrix<Real> &CuBlockMatrix<Real>::operator =(const CuBlockMatrix<Real> &other) { FreeCudaData(); data_ = other.data_; block_data_ = other.block_data_; num_rows_ = other.num_rows_; SetCudaData(); return *this; } template<class Real> void CuBlockMatrix<Real>::FreeCudaData() { #if HAVE_CUDA == 1 if (cu_data_ != NULL) { if (CuDevice::Instantiate().Enabled()) { CuDevice::Instantiate().Free(cu_data_); cu_data_ = NULL; } else { KALDI_ERR << "CuBlockMatrix: you have CUDA data pointer but " << "no GPU is enabled: likely code error."; } } #endif } template<class Real> void CuBlockMatrix<Real>::SetCudaData() { #if HAVE_CUDA == 1 KALDI_ASSERT(cu_data_ == NULL); if (block_data_.size() == 0) return; // Nothing to do. if (CuDevice::Instantiate().Enabled()) { CuTimer tim; std::vector<CuBlockMatrixData> tmp_cu_data(NumBlocks()); int32 row_offset = 0, col_offset = 0; for (size_t b = 0; b < NumBlocks(); b++) { CuSubMatrix<Real> this_mat = Block(b); CuBlockMatrixData &this_cu_data = tmp_cu_data[b]; this_cu_data.row_offset = row_offset; this_cu_data.col_offset = col_offset; this_cu_data.matrix_dim = this_mat.Dim(); this_cu_data.matrix_data = static_cast<void*>(this_mat.Data()); row_offset += this_mat.NumRows(); col_offset += this_mat.NumCols(); } size_t size = NumBlocks() * sizeof(CuBlockMatrixData); cu_data_ = static_cast<CuBlockMatrixData*>( CuDevice::Instantiate().Malloc(size)); CU_SAFE_CALL(cudaMemcpyAsync(cu_data_, &(tmp_cu_data[0]), size, cudaMemcpyHostToDevice, cudaStreamPerThread)); CU_SAFE_CALL(cudaStreamSynchronize(cudaStreamPerThread)); CuDevice::Instantiate().AccuProfile(__func__, tim); } #endif } template<class Real> void CuBlockMatrix<Real>::Swap(CuBlockMatrix<Real> *other) { data_.Swap(&other->data_); block_data_.swap(other->block_data_); std::swap(num_rows_, other->num_rows_); #if HAVE_CUDA == 1 std::swap(cu_data_, other->cu_data_); #endif } template<class Real> void CuBlockMatrix<Real>::Write(std::ostream &os, bool binary) const { WriteToken(os, binary, "<CuBlockMatrix>"); int32 num_blocks = NumBlocks(); WriteBasicType(os, binary, num_blocks); for (int32 b = 0; b < num_blocks; b++) this->Block(b).Write(os, binary); WriteToken(os, binary, "</CuBlockMatrix>"); } template<class Real> void CuBlockMatrix<Real>::Read(std::istream &is, bool binary) { Destroy(); int i = Peek(is, binary); std::vector<CuMatrix<Real> > data; if (i != static_cast<int>('<')) { // back-compatibility code so we can read the older format of // MixtureProbComponent. This code should be deleted eventually. int32 size; ReadBasicType(is, binary, &size); KALDI_ASSERT(size >= 0); data.resize(size); for (int32 i = 0; i < size; i++) data[i].Read(is, binary); } else { ExpectToken(is, binary, "<CuBlockMatrix>"); int32 size; ReadBasicType(is, binary, &size); KALDI_ASSERT(size >= 0); data.resize(size); for (int32 i = 0; i < size; i++) data[i].Read(is, binary); ExpectToken(is, binary, "</CuBlockMatrix>"); } CuBlockMatrix<Real> block_mat(data); // initializer from std::vector<CuMatrix<Real> > does // the main job of initialization. this->Swap(&block_mat); } template<class Real> void CuBlockMatrix<Real>::Destroy() { data_.Resize(0, 0); block_data_.clear(); num_rows_ = 0; FreeCudaData(); } // Does *this = alpha A B + beta * *this, discarding elements outside // the block structure of the *this matrix. template<class Real> void CuBlockMatrix<Real>::AddMatMat( BaseFloat alpha, const CuMatrix<Real> &A, MatrixTransposeType transA, const CuMatrix<Real> &B, MatrixTransposeType transB, BaseFloat beta) { MatrixIndexT A_num_rows = A.NumRows(), A_num_cols = A.NumCols(), A_row_stride = A.Stride(), A_col_stride = 1, B_num_rows = B.NumRows(), B_num_cols = B.NumCols(), B_row_stride = B.Stride(), B_col_stride = 1; if (transA == kTrans) { std::swap(A_num_rows, A_num_cols); std::swap(A_row_stride, A_col_stride); } if (transB == kTrans) { std::swap(B_num_rows, B_num_cols); std::swap(B_row_stride, B_col_stride); } KALDI_ASSERT(A_num_rows == NumRows() && B_num_cols == NumCols() && A_num_cols == B_num_rows); if (NumBlocks() == 0) return; // empty matrix. #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { CuTimer tim; // (x,y,z) dimensions are (block-id, row-of-block, col-of-block) // First some logic to choose block dims... // we assume (which we can, safely) that CU1DBLOCK is <= the max threads per block. int32 x_blocksize = std::min(CU1DBLOCK, NumBlocks()); // x dim corresponds to block-idx. int32 max_block_rows = MaxBlockRows(), max_block_cols = MaxBlockCols(); int32 y_blocksize = max_block_rows; while (y_blocksize * x_blocksize > CU1DBLOCK || y_blocksize > CU2DBLOCK) y_blocksize--; int32 z_blocksize = max_block_cols; while (z_blocksize * x_blocksize * y_blocksize > CU1DBLOCK || z_blocksize > CU2DBLOCK) z_blocksize--; dim3 dimBlock(x_blocksize, y_blocksize, z_blocksize); dim3 dimGrid(n_blocks(NumBlocks(), x_blocksize), n_blocks(max_block_rows, y_blocksize), n_blocks(max_block_cols, z_blocksize)); cuda_block_add_mat_mat(dimGrid, dimBlock, cu_data_, NumBlocks(), A.Data(), A_num_cols, A_row_stride, A_col_stride, B.Data(), B_row_stride, B_col_stride, alpha, beta); CU_SAFE_CALL(cudaGetLastError()); CuDevice::Instantiate().AccuProfile(__func__, tim); } else #endif { int32 row_offset = 0, col_offset = 0; for (MatrixIndexT b = 0; b < NumBlocks(); b++) { CuSubMatrix<Real> this_block = Block(b); MatrixIndexT this_num_rows = this_block.NumRows(), this_num_cols = this_block.NumCols(); CuSubMatrix<Real> A_part = (transA == kNoTrans ? A.Range(row_offset, this_num_rows, 0, A.NumCols()) : A.Range(0, A.NumRows(), row_offset, this_num_rows)), B_part = (transB == kNoTrans ? B.Range(0, B.NumRows(), col_offset, this_num_cols) : B.Range(col_offset, this_num_cols, 0, B.NumCols())); this_block.AddMatMat(alpha, A_part, transA, B_part, transB, beta); row_offset += this_num_rows; col_offset += this_num_cols; } KALDI_ASSERT(row_offset == NumRows() && col_offset == NumCols()); } } template<class Real> MatrixIndexT CuBlockMatrix<Real>::MaxBlockCols() const { MatrixIndexT max_cols = 0; for (size_t i = 0; i < block_data_.size(); i++) max_cols = std::max(max_cols, block_data_[i].num_cols); return max_cols; } template<class Real> MatrixIndexT CuBlockMatrix<Real>::MaxBlockRows() const { return data_.NumRows(); } template<class Real> void CuBlockMatrix<Real>::CopyFromMat(const CuMatrix<Real> &M) { KALDI_ASSERT(NumRows() == M.NumRows() && NumCols() == M.NumCols()); MatrixIndexT row_offset = 0, col_offset = 0; for (MatrixIndexT b = 0; b < NumBlocks(); b++) { CuSubMatrix<Real> this_block = Block(b); MatrixIndexT this_num_rows = this_block.NumRows(), this_num_cols = this_block.NumCols(); const CuSubMatrix<Real> src(M, row_offset, this_num_rows, col_offset, this_num_cols); this_block.CopyFromMat(src); row_offset += this_num_rows; col_offset += this_num_cols; } KALDI_ASSERT(row_offset == NumRows() && col_offset == NumCols()); } /** * Print the matrix to stream */ template<typename Real> std::ostream &operator << (std::ostream &out, const CuBlockMatrix<Real> &mat) { bool binary = false; mat.Write(out, binary); return out; } // instantiate the template template std::ostream &operator << (std::ostream &out, const CuBlockMatrix<float> &mat); template std::ostream &operator << (std::ostream &out, const CuBlockMatrix<double> &mat); // Instantiate the class for float and double. template class CuBlockMatrix<float>; template class CuBlockMatrix<double>; } // namespace kaldi |