cu-block-matrix.cc
11.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// cudamatrix/cu-block-matrix.cc
// Copyright 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#if HAVE_CUDA == 1
#include <cuda_runtime_api.h>
#include <cublas_v2.h>
#endif
#include <algorithm>
#include "base/timer.h"
#include "cudamatrix/cu-block-matrix.h"
#include "cudamatrix/cu-matrix.h"
#include "cudamatrix/cu-device.h"
namespace kaldi {
template<class Real>
CuBlockMatrix<Real>::CuBlockMatrix() {
#if HAVE_CUDA == 1
cu_data_ = NULL;
#endif
}
template<class Real>
CuBlockMatrix<Real>::CuBlockMatrix(const std::vector<CuMatrix<Real> >&data) {
#if HAVE_CUDA == 1
cu_data_ = NULL;
#endif
block_data_.resize(data.size());
MatrixIndexT row_offset = 0, col_offset = 0, max_num_rows = 0;
for (size_t b = 0; b < data.size(); b++) {
MatrixIndexT num_rows = data[b].NumRows(), num_cols = data[b].NumCols();
KALDI_ASSERT(num_rows > 0 && num_cols > 0);
BlockMatrixData block_data;
block_data.num_rows = num_rows;
block_data.num_cols = num_cols;
block_data.row_offset = row_offset;
block_data.col_offset = col_offset;
row_offset += num_rows;
col_offset += num_cols;
max_num_rows = std::max(max_num_rows, num_rows);
block_data_[b] = block_data;
}
num_rows_ = row_offset;
data_.Resize(max_num_rows, col_offset);
for (int32 b = 0; b < NumBlocks(); b++)
Block(b).CopyFromMat(data[b]);
SetCudaData();
}
template<class Real>
const CuSubMatrix<Real> CuBlockMatrix<Real>::Block(int32 b) const {
KALDI_ASSERT(static_cast<size_t>(b) < block_data_.size());
const BlockMatrixData &block_data = block_data_[b];
return CuSubMatrix<Real>(data_, 0, block_data.num_rows,
block_data.col_offset, block_data.num_cols);
}
template<class Real>
CuSubMatrix<Real> CuBlockMatrix<Real>::Block(int32 b) {
KALDI_ASSERT(static_cast<size_t>(b) < block_data_.size());
BlockMatrixData &block_data = block_data_[b];
return CuSubMatrix<Real>(data_, 0, block_data.num_rows,
block_data.col_offset, block_data.num_cols);
}
template<class Real>
CuBlockMatrix<Real>::CuBlockMatrix(const CuBlockMatrix<Real> &other):
data_(other.data_), block_data_(other.block_data_), num_rows_(other.num_rows_) {
#if HAVE_CUDA == 1
cu_data_ = NULL;
#endif
SetCudaData();
}
template<class Real>
CuBlockMatrix<Real> &CuBlockMatrix<Real>::operator =(const CuBlockMatrix<Real> &other) {
FreeCudaData();
data_ = other.data_;
block_data_ = other.block_data_;
num_rows_ = other.num_rows_;
SetCudaData();
return *this;
}
template<class Real>
void CuBlockMatrix<Real>::FreeCudaData() {
#if HAVE_CUDA == 1
if (cu_data_ != NULL) {
if (CuDevice::Instantiate().Enabled()) {
CuDevice::Instantiate().Free(cu_data_);
cu_data_ = NULL;
} else {
KALDI_ERR << "CuBlockMatrix: you have CUDA data pointer but "
<< "no GPU is enabled: likely code error.";
}
}
#endif
}
template<class Real>
void CuBlockMatrix<Real>::SetCudaData() {
#if HAVE_CUDA == 1
KALDI_ASSERT(cu_data_ == NULL);
if (block_data_.size() == 0) return; // Nothing to do.
if (CuDevice::Instantiate().Enabled()) {
CuTimer tim;
std::vector<CuBlockMatrixData> tmp_cu_data(NumBlocks());
int32 row_offset = 0, col_offset = 0;
for (size_t b = 0; b < NumBlocks(); b++) {
CuSubMatrix<Real> this_mat = Block(b);
CuBlockMatrixData &this_cu_data = tmp_cu_data[b];
this_cu_data.row_offset = row_offset;
this_cu_data.col_offset = col_offset;
this_cu_data.matrix_dim = this_mat.Dim();
this_cu_data.matrix_data = static_cast<void*>(this_mat.Data());
row_offset += this_mat.NumRows();
col_offset += this_mat.NumCols();
}
size_t size = NumBlocks() * sizeof(CuBlockMatrixData);
cu_data_ = static_cast<CuBlockMatrixData*>(
CuDevice::Instantiate().Malloc(size));
CU_SAFE_CALL(cudaMemcpyAsync(cu_data_, &(tmp_cu_data[0]), size,
cudaMemcpyHostToDevice, cudaStreamPerThread));
CU_SAFE_CALL(cudaStreamSynchronize(cudaStreamPerThread));
CuDevice::Instantiate().AccuProfile(__func__, tim);
}
#endif
}
template<class Real>
void CuBlockMatrix<Real>::Swap(CuBlockMatrix<Real> *other) {
data_.Swap(&other->data_);
block_data_.swap(other->block_data_);
std::swap(num_rows_, other->num_rows_);
#if HAVE_CUDA == 1
std::swap(cu_data_, other->cu_data_);
#endif
}
template<class Real>
void CuBlockMatrix<Real>::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<CuBlockMatrix>");
int32 num_blocks = NumBlocks();
WriteBasicType(os, binary, num_blocks);
for (int32 b = 0; b < num_blocks; b++)
this->Block(b).Write(os, binary);
WriteToken(os, binary, "</CuBlockMatrix>");
}
template<class Real>
void CuBlockMatrix<Real>::Read(std::istream &is, bool binary) {
Destroy();
int i = Peek(is, binary);
std::vector<CuMatrix<Real> > data;
if (i != static_cast<int>('<')) {
// back-compatibility code so we can read the older format of
// MixtureProbComponent. This code should be deleted eventually.
int32 size;
ReadBasicType(is, binary, &size);
KALDI_ASSERT(size >= 0);
data.resize(size);
for (int32 i = 0; i < size; i++)
data[i].Read(is, binary);
} else {
ExpectToken(is, binary, "<CuBlockMatrix>");
int32 size;
ReadBasicType(is, binary, &size);
KALDI_ASSERT(size >= 0);
data.resize(size);
for (int32 i = 0; i < size; i++)
data[i].Read(is, binary);
ExpectToken(is, binary, "</CuBlockMatrix>");
}
CuBlockMatrix<Real> block_mat(data); // initializer from std::vector<CuMatrix<Real> > does
// the main job of initialization.
this->Swap(&block_mat);
}
template<class Real>
void CuBlockMatrix<Real>::Destroy() {
data_.Resize(0, 0);
block_data_.clear();
num_rows_ = 0;
FreeCudaData();
}
// Does *this = alpha A B + beta * *this, discarding elements outside
// the block structure of the *this matrix.
template<class Real>
void CuBlockMatrix<Real>::AddMatMat(
BaseFloat alpha,
const CuMatrix<Real> &A, MatrixTransposeType transA,
const CuMatrix<Real> &B, MatrixTransposeType transB,
BaseFloat beta) {
MatrixIndexT A_num_rows = A.NumRows(), A_num_cols = A.NumCols(),
A_row_stride = A.Stride(), A_col_stride = 1,
B_num_rows = B.NumRows(), B_num_cols = B.NumCols(),
B_row_stride = B.Stride(), B_col_stride = 1;
if (transA == kTrans) {
std::swap(A_num_rows, A_num_cols);
std::swap(A_row_stride, A_col_stride);
}
if (transB == kTrans) {
std::swap(B_num_rows, B_num_cols);
std::swap(B_row_stride, B_col_stride);
}
KALDI_ASSERT(A_num_rows == NumRows() && B_num_cols == NumCols()
&& A_num_cols == B_num_rows);
if (NumBlocks() == 0) return; // empty matrix.
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
CuTimer tim;
// (x,y,z) dimensions are (block-id, row-of-block, col-of-block)
// First some logic to choose block dims...
// we assume (which we can, safely) that CU1DBLOCK is <= the max threads per block.
int32 x_blocksize = std::min(CU1DBLOCK, NumBlocks()); // x dim corresponds to block-idx.
int32 max_block_rows = MaxBlockRows(), max_block_cols = MaxBlockCols();
int32 y_blocksize = max_block_rows;
while (y_blocksize * x_blocksize > CU1DBLOCK || y_blocksize > CU2DBLOCK)
y_blocksize--;
int32 z_blocksize = max_block_cols;
while (z_blocksize * x_blocksize * y_blocksize > CU1DBLOCK || z_blocksize > CU2DBLOCK)
z_blocksize--;
dim3 dimBlock(x_blocksize, y_blocksize, z_blocksize);
dim3 dimGrid(n_blocks(NumBlocks(), x_blocksize),
n_blocks(max_block_rows, y_blocksize),
n_blocks(max_block_cols, z_blocksize));
cuda_block_add_mat_mat(dimGrid, dimBlock, cu_data_, NumBlocks(),
A.Data(), A_num_cols, A_row_stride, A_col_stride,
B.Data(), B_row_stride, B_col_stride, alpha, beta);
CU_SAFE_CALL(cudaGetLastError());
CuDevice::Instantiate().AccuProfile(__func__, tim);
} else
#endif
{
int32 row_offset = 0, col_offset = 0;
for (MatrixIndexT b = 0; b < NumBlocks(); b++) {
CuSubMatrix<Real> this_block = Block(b);
MatrixIndexT this_num_rows = this_block.NumRows(),
this_num_cols = this_block.NumCols();
CuSubMatrix<Real> A_part = (transA == kNoTrans ?
A.Range(row_offset, this_num_rows,
0, A.NumCols()) :
A.Range(0, A.NumRows(),
row_offset, this_num_rows)),
B_part = (transB == kNoTrans ?
B.Range(0, B.NumRows(),
col_offset, this_num_cols) :
B.Range(col_offset, this_num_cols,
0, B.NumCols()));
this_block.AddMatMat(alpha, A_part, transA, B_part, transB, beta);
row_offset += this_num_rows;
col_offset += this_num_cols;
}
KALDI_ASSERT(row_offset == NumRows() && col_offset == NumCols());
}
}
template<class Real>
MatrixIndexT CuBlockMatrix<Real>::MaxBlockCols() const {
MatrixIndexT max_cols = 0;
for (size_t i = 0; i < block_data_.size(); i++)
max_cols = std::max(max_cols, block_data_[i].num_cols);
return max_cols;
}
template<class Real>
MatrixIndexT CuBlockMatrix<Real>::MaxBlockRows() const {
return data_.NumRows();
}
template<class Real>
void CuBlockMatrix<Real>::CopyFromMat(const CuMatrix<Real> &M) {
KALDI_ASSERT(NumRows() == M.NumRows() && NumCols() == M.NumCols());
MatrixIndexT row_offset = 0, col_offset = 0;
for (MatrixIndexT b = 0; b < NumBlocks(); b++) {
CuSubMatrix<Real> this_block = Block(b);
MatrixIndexT this_num_rows = this_block.NumRows(),
this_num_cols = this_block.NumCols();
const CuSubMatrix<Real> src(M, row_offset, this_num_rows,
col_offset, this_num_cols);
this_block.CopyFromMat(src);
row_offset += this_num_rows;
col_offset += this_num_cols;
}
KALDI_ASSERT(row_offset == NumRows() && col_offset == NumCols());
}
/**
* Print the matrix to stream
*/
template<typename Real>
std::ostream &operator << (std::ostream &out, const CuBlockMatrix<Real> &mat) {
bool binary = false;
mat.Write(out, binary);
return out;
}
// instantiate the template
template
std::ostream &operator << (std::ostream &out, const CuBlockMatrix<float> &mat);
template
std::ostream &operator << (std::ostream &out, const CuBlockMatrix<double> &mat);
// Instantiate the class for float and double.
template class CuBlockMatrix<float>;
template class CuBlockMatrix<double>;
} // namespace kaldi