Blame view
src/decoder/faster-decoder.cc
13 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
// decoder/faster-decoder.cc // Copyright 2009-2011 Microsoft Corporation // 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "decoder/faster-decoder.h" namespace kaldi { FasterDecoder::FasterDecoder(const fst::Fst<fst::StdArc> &fst, const FasterDecoderOptions &opts): fst_(fst), config_(opts), num_frames_decoded_(-1) { KALDI_ASSERT(config_.hash_ratio >= 1.0); // less doesn't make much sense. KALDI_ASSERT(config_.max_active > 1); KALDI_ASSERT(config_.min_active >= 0 && config_.min_active < config_.max_active); toks_.SetSize(1000); // just so on the first frame we do something reasonable. } void FasterDecoder::InitDecoding() { // clean up from last time: ClearToks(toks_.Clear()); StateId start_state = fst_.Start(); KALDI_ASSERT(start_state != fst::kNoStateId); Arc dummy_arc(0, 0, Weight::One(), start_state); toks_.Insert(start_state, new Token(dummy_arc, NULL)); ProcessNonemitting(std::numeric_limits<float>::max()); num_frames_decoded_ = 0; } void FasterDecoder::Decode(DecodableInterface *decodable) { InitDecoding(); while (!decodable->IsLastFrame(num_frames_decoded_ - 1)) { double weight_cutoff = ProcessEmitting(decodable); ProcessNonemitting(weight_cutoff); } } void FasterDecoder::AdvanceDecoding(DecodableInterface *decodable, int32 max_num_frames) { KALDI_ASSERT(num_frames_decoded_ >= 0 && "You must call InitDecoding() before AdvanceDecoding()"); int32 num_frames_ready = decodable->NumFramesReady(); // num_frames_ready must be >= num_frames_decoded, or else // the number of frames ready must have decreased (which doesn't // make sense) or the decodable object changed between calls // (which isn't allowed). KALDI_ASSERT(num_frames_ready >= num_frames_decoded_); int32 target_frames_decoded = num_frames_ready; if (max_num_frames >= 0) target_frames_decoded = std::min(target_frames_decoded, num_frames_decoded_ + max_num_frames); while (num_frames_decoded_ < target_frames_decoded) { // note: ProcessEmitting() increments num_frames_decoded_ double weight_cutoff = ProcessEmitting(decodable); ProcessNonemitting(weight_cutoff); } } bool FasterDecoder::ReachedFinal() { for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) { if (e->val->cost_ != std::numeric_limits<double>::infinity() && fst_.Final(e->key) != Weight::Zero()) return true; } return false; } bool FasterDecoder::GetBestPath(fst::MutableFst<LatticeArc> *fst_out, bool use_final_probs) { // GetBestPath gets the decoding output. If "use_final_probs" is true // AND we reached a final state, it limits itself to final states; // otherwise it gets the most likely token not taking into // account final-probs. fst_out will be empty (Start() == kNoStateId) if // nothing was available. It returns true if it got output (thus, fst_out // will be nonempty). fst_out->DeleteStates(); Token *best_tok = NULL; bool is_final = ReachedFinal(); if (!is_final) { for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) if (best_tok == NULL || *best_tok < *(e->val) ) best_tok = e->val; } else { double infinity = std::numeric_limits<double>::infinity(), best_cost = infinity; for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) { double this_cost = e->val->cost_ + fst_.Final(e->key).Value(); if (this_cost < best_cost && this_cost != infinity) { best_cost = this_cost; best_tok = e->val; } } } if (best_tok == NULL) return false; // No output. std::vector<LatticeArc> arcs_reverse; // arcs in reverse order. for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) { BaseFloat tot_cost = tok->cost_ - (tok->prev_ ? tok->prev_->cost_ : 0.0), graph_cost = tok->arc_.weight.Value(), ac_cost = tot_cost - graph_cost; LatticeArc l_arc(tok->arc_.ilabel, tok->arc_.olabel, LatticeWeight(graph_cost, ac_cost), tok->arc_.nextstate); arcs_reverse.push_back(l_arc); } KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start()); arcs_reverse.pop_back(); // that was a "fake" token... gives no info. StateId cur_state = fst_out->AddState(); fst_out->SetStart(cur_state); for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) { LatticeArc arc = arcs_reverse[i]; arc.nextstate = fst_out->AddState(); fst_out->AddArc(cur_state, arc); cur_state = arc.nextstate; } if (is_final && use_final_probs) { Weight final_weight = fst_.Final(best_tok->arc_.nextstate); fst_out->SetFinal(cur_state, LatticeWeight(final_weight.Value(), 0.0)); } else { fst_out->SetFinal(cur_state, LatticeWeight::One()); } RemoveEpsLocal(fst_out); return true; } // Gets the weight cutoff. Also counts the active tokens. double FasterDecoder::GetCutoff(Elem *list_head, size_t *tok_count, BaseFloat *adaptive_beam, Elem **best_elem) { double best_cost = std::numeric_limits<double>::infinity(); size_t count = 0; if (config_.max_active == std::numeric_limits<int32>::max() && config_.min_active == 0) { for (Elem *e = list_head; e != NULL; e = e->tail, count++) { double w = e->val->cost_; if (w < best_cost) { best_cost = w; if (best_elem) *best_elem = e; } } if (tok_count != NULL) *tok_count = count; if (adaptive_beam != NULL) *adaptive_beam = config_.beam; return best_cost + config_.beam; } else { tmp_array_.clear(); for (Elem *e = list_head; e != NULL; e = e->tail, count++) { double w = e->val->cost_; tmp_array_.push_back(w); if (w < best_cost) { best_cost = w; if (best_elem) *best_elem = e; } } if (tok_count != NULL) *tok_count = count; double beam_cutoff = best_cost + config_.beam, min_active_cutoff = std::numeric_limits<double>::infinity(), max_active_cutoff = std::numeric_limits<double>::infinity(); if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) { std::nth_element(tmp_array_.begin(), tmp_array_.begin() + config_.max_active, tmp_array_.end()); max_active_cutoff = tmp_array_[config_.max_active]; } if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam. if (adaptive_beam) *adaptive_beam = max_active_cutoff - best_cost + config_.beam_delta; return max_active_cutoff; } if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) { if (config_.min_active == 0) min_active_cutoff = best_cost; else { std::nth_element(tmp_array_.begin(), tmp_array_.begin() + config_.min_active, tmp_array_.size() > static_cast<size_t>(config_.max_active) ? tmp_array_.begin() + config_.max_active : tmp_array_.end()); min_active_cutoff = tmp_array_[config_.min_active]; } } if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam. if (adaptive_beam) *adaptive_beam = min_active_cutoff - best_cost + config_.beam_delta; return min_active_cutoff; } else { *adaptive_beam = config_.beam; return beam_cutoff; } } } void FasterDecoder::PossiblyResizeHash(size_t num_toks) { size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks) * config_.hash_ratio); if (new_sz > toks_.Size()) { toks_.SetSize(new_sz); } } // ProcessEmitting returns the likelihood cutoff used. double FasterDecoder::ProcessEmitting(DecodableInterface *decodable) { int32 frame = num_frames_decoded_; Elem *last_toks = toks_.Clear(); size_t tok_cnt; BaseFloat adaptive_beam; Elem *best_elem = NULL; double weight_cutoff = GetCutoff(last_toks, &tok_cnt, &adaptive_beam, &best_elem); KALDI_VLOG(3) << tok_cnt << " tokens active."; PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough. // This is the cutoff we use after adding in the log-likes (i.e. // for the next frame). This is a bound on the cutoff we will use // on the next frame. double next_weight_cutoff = std::numeric_limits<double>::infinity(); // First process the best token to get a hopefully // reasonably tight bound on the next cutoff. if (best_elem) { StateId state = best_elem->key; Token *tok = best_elem->val; for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); if (arc.ilabel != 0) { // we'd propagate.. BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel); double new_weight = arc.weight.Value() + tok->cost_ + ac_cost; if (new_weight + adaptive_beam < next_weight_cutoff) next_weight_cutoff = new_weight + adaptive_beam; } } } // int32 n = 0, np = 0; // the tokens are now owned here, in last_toks, and the hash is empty. // 'owned' is a complex thing here; the point is we need to call TokenDelete // on each elem 'e' to let toks_ know we're done with them. for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) { // loop this way // n++; // because we delete "e" as we go. StateId state = e->key; Token *tok = e->val; if (tok->cost_ < weight_cutoff) { // not pruned. // np++; KALDI_ASSERT(state == tok->arc_.nextstate); for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state); !aiter.Done(); aiter.Next()) { Arc arc = aiter.Value(); if (arc.ilabel != 0) { // propagate.. BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel); double new_weight = arc.weight.Value() + tok->cost_ + ac_cost; if (new_weight < next_weight_cutoff) { // not pruned.. Token *new_tok = new Token(arc, ac_cost, tok); Elem *e_found = toks_.Insert(arc.nextstate, new_tok); if (new_weight + adaptive_beam < next_weight_cutoff) next_weight_cutoff = new_weight + adaptive_beam; if (e_found->val != new_tok) { if (*(e_found->val) < *new_tok) { Token::TokenDelete(e_found->val); e_found->val = new_tok; } else { Token::TokenDelete(new_tok); } } } } } } e_tail = e->tail; Token::TokenDelete(e->val); toks_.Delete(e); } num_frames_decoded_++; return next_weight_cutoff; } // TODO: first time we go through this, could avoid using the queue. void FasterDecoder::ProcessNonemitting(double cutoff) { // Processes nonemitting arcs for one frame. KALDI_ASSERT(queue_.empty()); for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) queue_.push_back(e); while (!queue_.empty()) { const Elem* e = queue_.back(); queue_.pop_back(); StateId state = e->key; Token *tok = e->val; // would segfault if state not // in toks_ but this can't happen. if (tok->cost_ > cutoff) { // Don't bother processing successors. continue; } KALDI_ASSERT(tok != NULL && state == tok->arc_.nextstate); for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); if (arc.ilabel == 0) { // propagate nonemitting only... Token *new_tok = new Token(arc, tok); if (new_tok->cost_ > cutoff) { // prune Token::TokenDelete(new_tok); } else { Elem *e_found = toks_.Insert(arc.nextstate, new_tok); if (e_found->val == new_tok) { queue_.push_back(e_found); } else { if (*(e_found->val) < *new_tok) { Token::TokenDelete(e_found->val); e_found->val = new_tok; queue_.push_back(e_found); } else { Token::TokenDelete(new_tok); } } } } } } } void FasterDecoder::ClearToks(Elem *list) { for (Elem *e = list, *e_tail; e != NULL; e = e_tail) { Token::TokenDelete(e->val); e_tail = e->tail; toks_.Delete(e); } } } // end namespace kaldi. |