faster-decoder.cc
13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// decoder/faster-decoder.cc
// Copyright 2009-2011 Microsoft Corporation
// 2012-2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "decoder/faster-decoder.h"
namespace kaldi {
FasterDecoder::FasterDecoder(const fst::Fst<fst::StdArc> &fst,
const FasterDecoderOptions &opts):
fst_(fst), config_(opts), num_frames_decoded_(-1) {
KALDI_ASSERT(config_.hash_ratio >= 1.0); // less doesn't make much sense.
KALDI_ASSERT(config_.max_active > 1);
KALDI_ASSERT(config_.min_active >= 0 && config_.min_active < config_.max_active);
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
void FasterDecoder::InitDecoding() {
// clean up from last time:
ClearToks(toks_.Clear());
StateId start_state = fst_.Start();
KALDI_ASSERT(start_state != fst::kNoStateId);
Arc dummy_arc(0, 0, Weight::One(), start_state);
toks_.Insert(start_state, new Token(dummy_arc, NULL));
ProcessNonemitting(std::numeric_limits<float>::max());
num_frames_decoded_ = 0;
}
void FasterDecoder::Decode(DecodableInterface *decodable) {
InitDecoding();
while (!decodable->IsLastFrame(num_frames_decoded_ - 1)) {
double weight_cutoff = ProcessEmitting(decodable);
ProcessNonemitting(weight_cutoff);
}
}
void FasterDecoder::AdvanceDecoding(DecodableInterface *decodable,
int32 max_num_frames) {
KALDI_ASSERT(num_frames_decoded_ >= 0 &&
"You must call InitDecoding() before AdvanceDecoding()");
int32 num_frames_ready = decodable->NumFramesReady();
// num_frames_ready must be >= num_frames_decoded, or else
// the number of frames ready must have decreased (which doesn't
// make sense) or the decodable object changed between calls
// (which isn't allowed).
KALDI_ASSERT(num_frames_ready >= num_frames_decoded_);
int32 target_frames_decoded = num_frames_ready;
if (max_num_frames >= 0)
target_frames_decoded = std::min(target_frames_decoded,
num_frames_decoded_ + max_num_frames);
while (num_frames_decoded_ < target_frames_decoded) {
// note: ProcessEmitting() increments num_frames_decoded_
double weight_cutoff = ProcessEmitting(decodable);
ProcessNonemitting(weight_cutoff);
}
}
bool FasterDecoder::ReachedFinal() {
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
if (e->val->cost_ != std::numeric_limits<double>::infinity() &&
fst_.Final(e->key) != Weight::Zero())
return true;
}
return false;
}
bool FasterDecoder::GetBestPath(fst::MutableFst<LatticeArc> *fst_out,
bool use_final_probs) {
// GetBestPath gets the decoding output. If "use_final_probs" is true
// AND we reached a final state, it limits itself to final states;
// otherwise it gets the most likely token not taking into
// account final-probs. fst_out will be empty (Start() == kNoStateId) if
// nothing was available. It returns true if it got output (thus, fst_out
// will be nonempty).
fst_out->DeleteStates();
Token *best_tok = NULL;
bool is_final = ReachedFinal();
if (!is_final) {
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
if (best_tok == NULL || *best_tok < *(e->val) )
best_tok = e->val;
} else {
double infinity = std::numeric_limits<double>::infinity(),
best_cost = infinity;
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
double this_cost = e->val->cost_ + fst_.Final(e->key).Value();
if (this_cost < best_cost && this_cost != infinity) {
best_cost = this_cost;
best_tok = e->val;
}
}
}
if (best_tok == NULL) return false; // No output.
std::vector<LatticeArc> arcs_reverse; // arcs in reverse order.
for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) {
BaseFloat tot_cost = tok->cost_ -
(tok->prev_ ? tok->prev_->cost_ : 0.0),
graph_cost = tok->arc_.weight.Value(),
ac_cost = tot_cost - graph_cost;
LatticeArc l_arc(tok->arc_.ilabel,
tok->arc_.olabel,
LatticeWeight(graph_cost, ac_cost),
tok->arc_.nextstate);
arcs_reverse.push_back(l_arc);
}
KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
arcs_reverse.pop_back(); // that was a "fake" token... gives no info.
StateId cur_state = fst_out->AddState();
fst_out->SetStart(cur_state);
for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
LatticeArc arc = arcs_reverse[i];
arc.nextstate = fst_out->AddState();
fst_out->AddArc(cur_state, arc);
cur_state = arc.nextstate;
}
if (is_final && use_final_probs) {
Weight final_weight = fst_.Final(best_tok->arc_.nextstate);
fst_out->SetFinal(cur_state, LatticeWeight(final_weight.Value(), 0.0));
} else {
fst_out->SetFinal(cur_state, LatticeWeight::One());
}
RemoveEpsLocal(fst_out);
return true;
}
// Gets the weight cutoff. Also counts the active tokens.
double FasterDecoder::GetCutoff(Elem *list_head, size_t *tok_count,
BaseFloat *adaptive_beam, Elem **best_elem) {
double best_cost = std::numeric_limits<double>::infinity();
size_t count = 0;
if (config_.max_active == std::numeric_limits<int32>::max() &&
config_.min_active == 0) {
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
double w = e->val->cost_;
if (w < best_cost) {
best_cost = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
return best_cost + config_.beam;
} else {
tmp_array_.clear();
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
double w = e->val->cost_;
tmp_array_.push_back(w);
if (w < best_cost) {
best_cost = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
double beam_cutoff = best_cost + config_.beam,
min_active_cutoff = std::numeric_limits<double>::infinity(),
max_active_cutoff = std::numeric_limits<double>::infinity();
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.max_active,
tmp_array_.end());
max_active_cutoff = tmp_array_[config_.max_active];
}
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
if (adaptive_beam)
*adaptive_beam = max_active_cutoff - best_cost + config_.beam_delta;
return max_active_cutoff;
}
if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
if (config_.min_active == 0) min_active_cutoff = best_cost;
else {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.min_active,
tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
tmp_array_.begin() + config_.max_active :
tmp_array_.end());
min_active_cutoff = tmp_array_[config_.min_active];
}
}
if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
if (adaptive_beam)
*adaptive_beam = min_active_cutoff - best_cost + config_.beam_delta;
return min_active_cutoff;
} else {
*adaptive_beam = config_.beam;
return beam_cutoff;
}
}
}
void FasterDecoder::PossiblyResizeHash(size_t num_toks) {
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
* config_.hash_ratio);
if (new_sz > toks_.Size()) {
toks_.SetSize(new_sz);
}
}
// ProcessEmitting returns the likelihood cutoff used.
double FasterDecoder::ProcessEmitting(DecodableInterface *decodable) {
int32 frame = num_frames_decoded_;
Elem *last_toks = toks_.Clear();
size_t tok_cnt;
BaseFloat adaptive_beam;
Elem *best_elem = NULL;
double weight_cutoff = GetCutoff(last_toks, &tok_cnt,
&adaptive_beam, &best_elem);
KALDI_VLOG(3) << tok_cnt << " tokens active.";
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
// This is the cutoff we use after adding in the log-likes (i.e.
// for the next frame). This is a bound on the cutoff we will use
// on the next frame.
double next_weight_cutoff = std::numeric_limits<double>::infinity();
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff.
if (best_elem) {
StateId state = best_elem->key;
Token *tok = best_elem->val;
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // we'd propagate..
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel);
double new_weight = arc.weight.Value() + tok->cost_ + ac_cost;
if (new_weight + adaptive_beam < next_weight_cutoff)
next_weight_cutoff = new_weight + adaptive_beam;
}
}
}
// int32 n = 0, np = 0;
// the tokens are now owned here, in last_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call TokenDelete
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) { // loop this way
// n++;
// because we delete "e" as we go.
StateId state = e->key;
Token *tok = e->val;
if (tok->cost_ < weight_cutoff) { // not pruned.
// np++;
KALDI_ASSERT(state == tok->arc_.nextstate);
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel);
double new_weight = arc.weight.Value() + tok->cost_ + ac_cost;
if (new_weight < next_weight_cutoff) { // not pruned..
Token *new_tok = new Token(arc, ac_cost, tok);
Elem *e_found = toks_.Insert(arc.nextstate, new_tok);
if (new_weight + adaptive_beam < next_weight_cutoff)
next_weight_cutoff = new_weight + adaptive_beam;
if (e_found->val != new_tok) {
if (*(e_found->val) < *new_tok) {
Token::TokenDelete(e_found->val);
e_found->val = new_tok;
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
}
e_tail = e->tail;
Token::TokenDelete(e->val);
toks_.Delete(e);
}
num_frames_decoded_++;
return next_weight_cutoff;
}
// TODO: first time we go through this, could avoid using the queue.
void FasterDecoder::ProcessNonemitting(double cutoff) {
// Processes nonemitting arcs for one frame.
KALDI_ASSERT(queue_.empty());
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
queue_.push_back(e);
while (!queue_.empty()) {
const Elem* e = queue_.back();
queue_.pop_back();
StateId state = e->key;
Token *tok = e->val; // would segfault if state not
// in toks_ but this can't happen.
if (tok->cost_ > cutoff) { // Don't bother processing successors.
continue;
}
KALDI_ASSERT(tok != NULL && state == tok->arc_.nextstate);
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel == 0) { // propagate nonemitting only...
Token *new_tok = new Token(arc, tok);
if (new_tok->cost_ > cutoff) { // prune
Token::TokenDelete(new_tok);
} else {
Elem *e_found = toks_.Insert(arc.nextstate, new_tok);
if (e_found->val == new_tok) {
queue_.push_back(e_found);
} else {
if (*(e_found->val) < *new_tok) {
Token::TokenDelete(e_found->val);
e_found->val = new_tok;
queue_.push_back(e_found);
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
}
}
void FasterDecoder::ClearToks(Elem *list) {
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
Token::TokenDelete(e->val);
e_tail = e->tail;
toks_.Delete(e);
}
}
} // end namespace kaldi.