Blame view
src/decoder/simple-decoder.cc
10.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
// decoder/simple-decoder.cc // Copyright 2009-2011 Microsoft Corporation // 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "decoder/simple-decoder.h" #include "fstext/remove-eps-local.h" #include <algorithm> namespace kaldi { SimpleDecoder::~SimpleDecoder() { ClearToks(cur_toks_); ClearToks(prev_toks_); } bool SimpleDecoder::Decode(DecodableInterface *decodable) { InitDecoding(); while( !decodable->IsLastFrame(num_frames_decoded_ - 1)) { ClearToks(prev_toks_); cur_toks_.swap(prev_toks_); ProcessEmitting(decodable); ProcessNonemitting(); PruneToks(beam_, &cur_toks_); } return (!cur_toks_.empty()); } void SimpleDecoder::InitDecoding() { // clean up from last time: ClearToks(cur_toks_); ClearToks(prev_toks_); // initialize decoding: StateId start_state = fst_.Start(); KALDI_ASSERT(start_state != fst::kNoStateId); StdArc dummy_arc(0, 0, StdWeight::One(), start_state); cur_toks_[start_state] = new Token(dummy_arc, 0.0, NULL); num_frames_decoded_ = 0; ProcessNonemitting(); } void SimpleDecoder::AdvanceDecoding(DecodableInterface *decodable, int32 max_num_frames) { KALDI_ASSERT(num_frames_decoded_ >= 0 && "You must call InitDecoding() before AdvanceDecoding()"); int32 num_frames_ready = decodable->NumFramesReady(); // num_frames_ready must be >= num_frames_decoded, or else // the number of frames ready must have decreased (which doesn't // make sense) or the decodable object changed between calls // (which isn't allowed). KALDI_ASSERT(num_frames_ready >= num_frames_decoded_); int32 target_frames_decoded = num_frames_ready; if (max_num_frames >= 0) target_frames_decoded = std::min(target_frames_decoded, num_frames_decoded_ + max_num_frames); while (num_frames_decoded_ < target_frames_decoded) { // note: ProcessEmitting() increments num_frames_decoded_ ClearToks(prev_toks_); cur_toks_.swap(prev_toks_); ProcessEmitting(decodable); ProcessNonemitting(); PruneToks(beam_, &cur_toks_); } } bool SimpleDecoder::ReachedFinal() const { for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin(); iter != cur_toks_.end(); ++iter) { if (iter->second->cost_ != std::numeric_limits<BaseFloat>::infinity() && fst_.Final(iter->first) != StdWeight::Zero()) return true; } return false; } BaseFloat SimpleDecoder::FinalRelativeCost() const { // as a special case, if there are no active tokens at all (e.g. some kind of // pruning failure), return infinity. double infinity = std::numeric_limits<double>::infinity(); if (cur_toks_.empty()) return infinity; double best_cost = infinity, best_cost_with_final = infinity; for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin(); iter != cur_toks_.end(); ++iter) { // Note: Plus is taking the minimum cost, since we're in the tropical // semiring. best_cost = std::min(best_cost, iter->second->cost_); best_cost_with_final = std::min(best_cost_with_final, iter->second->cost_ + fst_.Final(iter->first).Value()); } BaseFloat extra_cost = best_cost_with_final - best_cost; if (extra_cost != extra_cost) { // NaN. This shouldn't happen; it indicates some // kind of error, most likely. KALDI_WARN << "Found NaN (likely search failure in decoding)"; return infinity; } // Note: extra_cost will be infinity if no states were final. return extra_cost; } // Outputs an FST corresponding to the single best path // through the lattice. bool SimpleDecoder::GetBestPath(Lattice *fst_out, bool use_final_probs) const { fst_out->DeleteStates(); Token *best_tok = NULL; bool is_final = ReachedFinal(); if (!is_final) { for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin(); iter != cur_toks_.end(); ++iter) if (best_tok == NULL || *best_tok < *(iter->second) ) best_tok = iter->second; } else { double infinity =std::numeric_limits<double>::infinity(), best_cost = infinity; for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin(); iter != cur_toks_.end(); ++iter) { double this_cost = iter->second->cost_ + fst_.Final(iter->first).Value(); if (this_cost != infinity && this_cost < best_cost) { best_cost = this_cost; best_tok = iter->second; } } } if (best_tok == NULL) return false; // No output. std::vector<LatticeArc> arcs_reverse; // arcs in reverse order. for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) arcs_reverse.push_back(tok->arc_); KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start()); arcs_reverse.pop_back(); // that was a "fake" token... gives no info. StateId cur_state = fst_out->AddState(); fst_out->SetStart(cur_state); for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) { LatticeArc arc = arcs_reverse[i]; arc.nextstate = fst_out->AddState(); fst_out->AddArc(cur_state, arc); cur_state = arc.nextstate; } if (is_final && use_final_probs) fst_out->SetFinal(cur_state, LatticeWeight(fst_.Final(best_tok->arc_.nextstate).Value(), 0.0)); else fst_out->SetFinal(cur_state, LatticeWeight::One()); fst::RemoveEpsLocal(fst_out); return true; } void SimpleDecoder::ProcessEmitting(DecodableInterface *decodable) { int32 frame = num_frames_decoded_; // Processes emitting arcs for one frame. Propagates from // prev_toks_ to cur_toks_. double cutoff = std::numeric_limits<BaseFloat>::infinity(); for (unordered_map<StateId, Token*>::iterator iter = prev_toks_.begin(); iter != prev_toks_.end(); ++iter) { StateId state = iter->first; Token *tok = iter->second; KALDI_ASSERT(state == tok->arc_.nextstate); for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst_, state); !aiter.Done(); aiter.Next()) { const StdArc &arc = aiter.Value(); if (arc.ilabel != 0) { // propagate.. BaseFloat acoustic_cost = -decodable->LogLikelihood(frame, arc.ilabel); double total_cost = tok->cost_ + arc.weight.Value() + acoustic_cost; if (total_cost > cutoff) continue; if (total_cost + beam_ < cutoff) cutoff = total_cost + beam_; Token *new_tok = new Token(arc, acoustic_cost, tok); unordered_map<StateId, Token*>::iterator find_iter = cur_toks_.find(arc.nextstate); if (find_iter == cur_toks_.end()) { cur_toks_[arc.nextstate] = new_tok; } else { if ( *(find_iter->second) < *new_tok ) { Token::TokenDelete(find_iter->second); find_iter->second = new_tok; } else { Token::TokenDelete(new_tok); } } } } } num_frames_decoded_++; } void SimpleDecoder::ProcessNonemitting() { // Processes nonemitting arcs for one frame. Propagates within // cur_toks_. std::vector<StateId> queue; double infinity = std::numeric_limits<double>::infinity(); double best_cost = infinity; for (unordered_map<StateId, Token*>::iterator iter = cur_toks_.begin(); iter != cur_toks_.end(); ++iter) { queue.push_back(iter->first); best_cost = std::min(best_cost, iter->second->cost_); } double cutoff = best_cost + beam_; while (!queue.empty()) { StateId state = queue.back(); queue.pop_back(); Token *tok = cur_toks_[state]; KALDI_ASSERT(tok != NULL && state == tok->arc_.nextstate); for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst_, state); !aiter.Done(); aiter.Next()) { const StdArc &arc = aiter.Value(); if (arc.ilabel == 0) { // propagate nonemitting only... const BaseFloat acoustic_cost = 0.0; Token *new_tok = new Token(arc, acoustic_cost, tok); if (new_tok->cost_ > cutoff) { Token::TokenDelete(new_tok); } else { unordered_map<StateId, Token*>::iterator find_iter = cur_toks_.find(arc.nextstate); if (find_iter == cur_toks_.end()) { cur_toks_[arc.nextstate] = new_tok; queue.push_back(arc.nextstate); } else { if ( *(find_iter->second) < *new_tok ) { Token::TokenDelete(find_iter->second); find_iter->second = new_tok; queue.push_back(arc.nextstate); } else { Token::TokenDelete(new_tok); } } } } } } } // static void SimpleDecoder::ClearToks(unordered_map<StateId, Token*> &toks) { for (unordered_map<StateId, Token*>::iterator iter = toks.begin(); iter != toks.end(); ++iter) { Token::TokenDelete(iter->second); } toks.clear(); } // static void SimpleDecoder::PruneToks(BaseFloat beam, unordered_map<StateId, Token*> *toks) { if (toks->empty()) { KALDI_VLOG(2) << "No tokens to prune. "; return; } double best_cost = std::numeric_limits<double>::infinity(); for (unordered_map<StateId, Token*>::iterator iter = toks->begin(); iter != toks->end(); ++iter) best_cost = std::min(best_cost, iter->second->cost_); std::vector<StateId> retained; double cutoff = best_cost + beam; for (unordered_map<StateId, Token*>::iterator iter = toks->begin(); iter != toks->end(); ++iter) { if (iter->second->cost_ < cutoff) retained.push_back(iter->first); else Token::TokenDelete(iter->second); } unordered_map<StateId, Token*> tmp; for (size_t i = 0; i < retained.size(); i++) { tmp[retained[i]] = (*toks)[retained[i]]; } KALDI_VLOG(2) << "Pruned to " << (retained.size()) << " toks. "; tmp.swap(*toks); } } // end namespace kaldi. |