simple-decoder.cc
10.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// decoder/simple-decoder.cc
// Copyright 2009-2011 Microsoft Corporation
// 2012-2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "decoder/simple-decoder.h"
#include "fstext/remove-eps-local.h"
#include <algorithm>
namespace kaldi {
SimpleDecoder::~SimpleDecoder() {
ClearToks(cur_toks_);
ClearToks(prev_toks_);
}
bool SimpleDecoder::Decode(DecodableInterface *decodable) {
InitDecoding();
while( !decodable->IsLastFrame(num_frames_decoded_ - 1)) {
ClearToks(prev_toks_);
cur_toks_.swap(prev_toks_);
ProcessEmitting(decodable);
ProcessNonemitting();
PruneToks(beam_, &cur_toks_);
}
return (!cur_toks_.empty());
}
void SimpleDecoder::InitDecoding() {
// clean up from last time:
ClearToks(cur_toks_);
ClearToks(prev_toks_);
// initialize decoding:
StateId start_state = fst_.Start();
KALDI_ASSERT(start_state != fst::kNoStateId);
StdArc dummy_arc(0, 0, StdWeight::One(), start_state);
cur_toks_[start_state] = new Token(dummy_arc, 0.0, NULL);
num_frames_decoded_ = 0;
ProcessNonemitting();
}
void SimpleDecoder::AdvanceDecoding(DecodableInterface *decodable,
int32 max_num_frames) {
KALDI_ASSERT(num_frames_decoded_ >= 0 &&
"You must call InitDecoding() before AdvanceDecoding()");
int32 num_frames_ready = decodable->NumFramesReady();
// num_frames_ready must be >= num_frames_decoded, or else
// the number of frames ready must have decreased (which doesn't
// make sense) or the decodable object changed between calls
// (which isn't allowed).
KALDI_ASSERT(num_frames_ready >= num_frames_decoded_);
int32 target_frames_decoded = num_frames_ready;
if (max_num_frames >= 0)
target_frames_decoded = std::min(target_frames_decoded,
num_frames_decoded_ + max_num_frames);
while (num_frames_decoded_ < target_frames_decoded) {
// note: ProcessEmitting() increments num_frames_decoded_
ClearToks(prev_toks_);
cur_toks_.swap(prev_toks_);
ProcessEmitting(decodable);
ProcessNonemitting();
PruneToks(beam_, &cur_toks_);
}
}
bool SimpleDecoder::ReachedFinal() const {
for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin();
iter != cur_toks_.end();
++iter) {
if (iter->second->cost_ != std::numeric_limits<BaseFloat>::infinity() &&
fst_.Final(iter->first) != StdWeight::Zero())
return true;
}
return false;
}
BaseFloat SimpleDecoder::FinalRelativeCost() const {
// as a special case, if there are no active tokens at all (e.g. some kind of
// pruning failure), return infinity.
double infinity = std::numeric_limits<double>::infinity();
if (cur_toks_.empty())
return infinity;
double best_cost = infinity,
best_cost_with_final = infinity;
for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin();
iter != cur_toks_.end();
++iter) {
// Note: Plus is taking the minimum cost, since we're in the tropical
// semiring.
best_cost = std::min(best_cost, iter->second->cost_);
best_cost_with_final = std::min(best_cost_with_final,
iter->second->cost_ +
fst_.Final(iter->first).Value());
}
BaseFloat extra_cost = best_cost_with_final - best_cost;
if (extra_cost != extra_cost) { // NaN. This shouldn't happen; it indicates some
// kind of error, most likely.
KALDI_WARN << "Found NaN (likely search failure in decoding)";
return infinity;
}
// Note: extra_cost will be infinity if no states were final.
return extra_cost;
}
// Outputs an FST corresponding to the single best path
// through the lattice.
bool SimpleDecoder::GetBestPath(Lattice *fst_out, bool use_final_probs) const {
fst_out->DeleteStates();
Token *best_tok = NULL;
bool is_final = ReachedFinal();
if (!is_final) {
for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin();
iter != cur_toks_.end();
++iter)
if (best_tok == NULL || *best_tok < *(iter->second) )
best_tok = iter->second;
} else {
double infinity =std::numeric_limits<double>::infinity(),
best_cost = infinity;
for (unordered_map<StateId, Token*>::const_iterator iter = cur_toks_.begin();
iter != cur_toks_.end();
++iter) {
double this_cost = iter->second->cost_ + fst_.Final(iter->first).Value();
if (this_cost != infinity && this_cost < best_cost) {
best_cost = this_cost;
best_tok = iter->second;
}
}
}
if (best_tok == NULL) return false; // No output.
std::vector<LatticeArc> arcs_reverse; // arcs in reverse order.
for (Token *tok = best_tok; tok != NULL; tok = tok->prev_)
arcs_reverse.push_back(tok->arc_);
KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
arcs_reverse.pop_back(); // that was a "fake" token... gives no info.
StateId cur_state = fst_out->AddState();
fst_out->SetStart(cur_state);
for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
LatticeArc arc = arcs_reverse[i];
arc.nextstate = fst_out->AddState();
fst_out->AddArc(cur_state, arc);
cur_state = arc.nextstate;
}
if (is_final && use_final_probs)
fst_out->SetFinal(cur_state,
LatticeWeight(fst_.Final(best_tok->arc_.nextstate).Value(),
0.0));
else
fst_out->SetFinal(cur_state, LatticeWeight::One());
fst::RemoveEpsLocal(fst_out);
return true;
}
void SimpleDecoder::ProcessEmitting(DecodableInterface *decodable) {
int32 frame = num_frames_decoded_;
// Processes emitting arcs for one frame. Propagates from
// prev_toks_ to cur_toks_.
double cutoff = std::numeric_limits<BaseFloat>::infinity();
for (unordered_map<StateId, Token*>::iterator iter = prev_toks_.begin();
iter != prev_toks_.end();
++iter) {
StateId state = iter->first;
Token *tok = iter->second;
KALDI_ASSERT(state == tok->arc_.nextstate);
for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const StdArc &arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat acoustic_cost = -decodable->LogLikelihood(frame, arc.ilabel);
double total_cost = tok->cost_ + arc.weight.Value() + acoustic_cost;
if (total_cost > cutoff) continue;
if (total_cost + beam_ < cutoff)
cutoff = total_cost + beam_;
Token *new_tok = new Token(arc, acoustic_cost, tok);
unordered_map<StateId, Token*>::iterator find_iter
= cur_toks_.find(arc.nextstate);
if (find_iter == cur_toks_.end()) {
cur_toks_[arc.nextstate] = new_tok;
} else {
if ( *(find_iter->second) < *new_tok ) {
Token::TokenDelete(find_iter->second);
find_iter->second = new_tok;
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
num_frames_decoded_++;
}
void SimpleDecoder::ProcessNonemitting() {
// Processes nonemitting arcs for one frame. Propagates within
// cur_toks_.
std::vector<StateId> queue;
double infinity = std::numeric_limits<double>::infinity();
double best_cost = infinity;
for (unordered_map<StateId, Token*>::iterator iter = cur_toks_.begin();
iter != cur_toks_.end();
++iter) {
queue.push_back(iter->first);
best_cost = std::min(best_cost, iter->second->cost_);
}
double cutoff = best_cost + beam_;
while (!queue.empty()) {
StateId state = queue.back();
queue.pop_back();
Token *tok = cur_toks_[state];
KALDI_ASSERT(tok != NULL && state == tok->arc_.nextstate);
for (fst::ArcIterator<fst::Fst<StdArc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const StdArc &arc = aiter.Value();
if (arc.ilabel == 0) { // propagate nonemitting only...
const BaseFloat acoustic_cost = 0.0;
Token *new_tok = new Token(arc, acoustic_cost, tok);
if (new_tok->cost_ > cutoff) {
Token::TokenDelete(new_tok);
} else {
unordered_map<StateId, Token*>::iterator find_iter
= cur_toks_.find(arc.nextstate);
if (find_iter == cur_toks_.end()) {
cur_toks_[arc.nextstate] = new_tok;
queue.push_back(arc.nextstate);
} else {
if ( *(find_iter->second) < *new_tok ) {
Token::TokenDelete(find_iter->second);
find_iter->second = new_tok;
queue.push_back(arc.nextstate);
} else {
Token::TokenDelete(new_tok);
}
}
}
}
}
}
}
// static
void SimpleDecoder::ClearToks(unordered_map<StateId, Token*> &toks) {
for (unordered_map<StateId, Token*>::iterator iter = toks.begin();
iter != toks.end(); ++iter) {
Token::TokenDelete(iter->second);
}
toks.clear();
}
// static
void SimpleDecoder::PruneToks(BaseFloat beam, unordered_map<StateId, Token*> *toks) {
if (toks->empty()) {
KALDI_VLOG(2) << "No tokens to prune.\n";
return;
}
double best_cost = std::numeric_limits<double>::infinity();
for (unordered_map<StateId, Token*>::iterator iter = toks->begin();
iter != toks->end(); ++iter)
best_cost = std::min(best_cost, iter->second->cost_);
std::vector<StateId> retained;
double cutoff = best_cost + beam;
for (unordered_map<StateId, Token*>::iterator iter = toks->begin();
iter != toks->end(); ++iter) {
if (iter->second->cost_ < cutoff)
retained.push_back(iter->first);
else
Token::TokenDelete(iter->second);
}
unordered_map<StateId, Token*> tmp;
for (size_t i = 0; i < retained.size(); i++) {
tmp[retained[i]] = (*toks)[retained[i]];
}
KALDI_VLOG(2) << "Pruned to " << (retained.size()) << " toks.\n";
tmp.swap(*toks);
}
} // end namespace kaldi.