Blame view
src/gmm/am-diag-gmm.cc
13.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
// gmm/am-diag-gmm.cc // Copyright 2012 Arnab Ghoshal Johns Hopkins University (Author: Daniel Povey) Karel Vesely // Copyright 2009-2011 Saarland University; Microsoft Corporation; // Georg Stemmer // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <queue> #include <string> #include <vector> using std::vector; #include "gmm/am-diag-gmm.h" #include "util/stl-utils.h" #include "tree/clusterable-classes.h" #include "tree/cluster-utils.h" namespace kaldi { AmDiagGmm::~AmDiagGmm() { DeletePointers(&densities_); } void AmDiagGmm::Init(const DiagGmm &proto, int32 num_pdfs) { if (densities_.size() != 0) { KALDI_WARN << "Init() called on a non-empty object. Contents will be " "overwritten"; DeletePointers(&densities_); } if (num_pdfs == 0) { KALDI_WARN << "Init() called with number of pdfs = 0. Will do nothing."; return; } densities_.resize(num_pdfs, NULL); for (vector<DiagGmm*>::iterator itr = densities_.begin(), end = densities_.end(); itr != end; ++itr) { *itr = new DiagGmm(); (*itr)->CopyFromDiagGmm(proto); } } void AmDiagGmm::AddPdf(const DiagGmm &gmm) { if (densities_.size() != 0) // not the first gmm KALDI_ASSERT(gmm.Dim() == this->Dim()); DiagGmm *gmm_ptr = new DiagGmm(); gmm_ptr->CopyFromDiagGmm(gmm); densities_.push_back(gmm_ptr); } void AmDiagGmm::RemovePdf(int32 pdf_index) { KALDI_ASSERT(static_cast<size_t>(pdf_index) < densities_.size()); delete densities_[pdf_index]; densities_.erase(densities_.begin() + pdf_index); } int32 AmDiagGmm::NumGauss() const { int32 ans = 0; for (size_t i = 0; i < densities_.size(); i++) ans += densities_[i]->NumGauss(); return ans; } void AmDiagGmm::CopyFromAmDiagGmm(const AmDiagGmm &other) { if (densities_.size() != 0) { DeletePointers(&densities_); } densities_.resize(other.NumPdfs(), NULL); for (int32 i = 0, end = densities_.size(); i < end; i++) { densities_[i] = new DiagGmm(); densities_[i]->CopyFromDiagGmm(*other.densities_[i]); } } int32 AmDiagGmm::ComputeGconsts() { int32 num_bad = 0; for (std::vector<DiagGmm*>::iterator itr = densities_.begin(), end = densities_.end(); itr != end; ++itr) { num_bad += (*itr)->ComputeGconsts(); } if (num_bad > 0) KALDI_WARN << "Found " << num_bad << " Gaussian components."; return num_bad; } void AmDiagGmm::SplitByCount(const Vector<BaseFloat> &state_occs, int32 target_components, float perturb_factor, BaseFloat power, BaseFloat min_count) { int32 gauss_at_start = NumGauss(); std::vector<int32> targets; GetSplitTargets(state_occs, target_components, power, min_count, &targets); for (int32 i = 0; i < NumPdfs(); i++) { if (densities_[i]->NumGauss() < targets[i]) densities_[i]->Split(targets[i], perturb_factor); } KALDI_LOG << "Split " << NumPdfs() << " states with target = " << target_components << ", power = " << power << ", perturb_factor = " << perturb_factor << " and min_count = " << min_count << ", split #Gauss from " << gauss_at_start << " to " << NumGauss(); } void AmDiagGmm::MergeByCount(const Vector<BaseFloat> &state_occs, int32 target_components, BaseFloat power, BaseFloat min_count) { int32 gauss_at_start = NumGauss(); std::vector<int32> targets; GetSplitTargets(state_occs, target_components, power, min_count, &targets); for (int32 i = 0; i < NumPdfs(); i++) { if (targets[i] == 0) targets[i] = 1; // can't merge below 1. if (densities_[i]->NumGauss() > targets[i]) densities_[i]->Merge(targets[i]); } KALDI_LOG << "Merged " << NumPdfs() << " states with target = " << target_components << ", power = " << power << " and min_count = " << min_count << ", merged from " << gauss_at_start << " to " << NumGauss(); } void AmDiagGmm::Read(std::istream &in_stream, bool binary) { int32 num_pdfs, dim; ExpectToken(in_stream, binary, "<DIMENSION>"); ReadBasicType(in_stream, binary, &dim); ExpectToken(in_stream, binary, "<NUMPDFS>"); ReadBasicType(in_stream, binary, &num_pdfs); KALDI_ASSERT(num_pdfs > 0); densities_.reserve(num_pdfs); for (int32 i = 0; i < num_pdfs; i++) { densities_.push_back(new DiagGmm()); densities_.back()->Read(in_stream, binary); KALDI_ASSERT(densities_.back()->Dim() == dim); } } void AmDiagGmm::Write(std::ostream &out_stream, bool binary) const { int32 dim = this->Dim(); if (dim == 0) { KALDI_WARN << "Trying to write empty AmDiagGmm object."; } WriteToken(out_stream, binary, "<DIMENSION>"); WriteBasicType(out_stream, binary, dim); WriteToken(out_stream, binary, "<NUMPDFS>"); WriteBasicType(out_stream, binary, static_cast<int32>(densities_.size())); for (std::vector<DiagGmm*>::const_iterator it = densities_.begin(), end = densities_.end(); it != end; ++it) { (*it)->Write(out_stream, binary); } } void UbmClusteringOptions::Check() { if (ubm_num_gauss > intermediate_num_gauss) KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss << " > --intermediate-num_gauss=" << intermediate_num_gauss; if (ubm_num_gauss > max_am_gauss) KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss << " > --max-am-gauss=" << max_am_gauss; if (ubm_num_gauss <= 0) KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss; if (cluster_varfloor <= 0) KALDI_ERR << "Invalid parameters: --cluster-varfloor=" << cluster_varfloor; if (reduce_state_factor <= 0 || reduce_state_factor > 1) KALDI_ERR << "Invalid parameters: --reduce-state-factor=" << reduce_state_factor; } void ClusterGaussiansToUbm(const AmDiagGmm &am, const Vector<BaseFloat> &state_occs, UbmClusteringOptions opts, DiagGmm *ubm_out) { opts.Check(); // Make sure the various # of Gaussians make sense. if (am.NumGauss() > opts.max_am_gauss) { KALDI_LOG << "ClusterGaussiansToUbm: first reducing num-gauss from " << am.NumGauss() << " to " << opts.max_am_gauss; AmDiagGmm tmp_am; tmp_am.CopyFromAmDiagGmm(am); BaseFloat power = 1.0, min_count = 1.0; // Make the power 1, which I feel // is appropriate to the way we're doing the overall clustering procedure. tmp_am.MergeByCount(state_occs, opts.max_am_gauss, power, min_count); if (tmp_am.NumGauss() > opts.max_am_gauss) { KALDI_LOG << "Clustered down to " << tmp_am.NumGauss() << "; will not cluster further"; opts.max_am_gauss = tmp_am.NumGauss(); } ClusterGaussiansToUbm(tmp_am, state_occs, opts, ubm_out); return; } int32 num_pdfs = static_cast<int32>(am.NumPdfs()), dim = am.Dim(), num_clust_states = static_cast<int32>(opts.reduce_state_factor*num_pdfs); Vector<BaseFloat> tmp_mean(dim); Vector<BaseFloat> tmp_var(dim); DiagGmm tmp_gmm; vector<Clusterable*> states; states.reserve(num_pdfs); // NOT resize(); uses push_back. // Replace the GMM for each state with a single Gaussian. KALDI_VLOG(1) << "Merging densities to 1 Gaussian per state."; for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) { KALDI_VLOG(3) << "Merging Gausians for state : " << pdf_index; tmp_gmm.CopyFromDiagGmm(am.GetPdf(pdf_index)); tmp_gmm.Merge(1); tmp_gmm.GetComponentMean(0, &tmp_mean); tmp_gmm.GetComponentVariance(0, &tmp_var); tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats. // It may cause problems downstream if we add states with zero weights (see // KALDI_ASSERT(weight > 0) below), so we put in a very small floor. // These states with tiny weights will later get merged into other states. BaseFloat this_weight = 1.0e-10 + state_occs(pdf_index); tmp_mean.Scale(this_weight); tmp_var.Scale(this_weight); states.push_back(new GaussClusterable(tmp_mean, tmp_var, opts.cluster_varfloor, this_weight)); } // Bottom-up clustering of the Gaussians corresponding to each state, which // gives a partial clustering of states in the 'state_clusters' vector. vector<int32> state_clusters; KALDI_VLOG(1) << "Creating " << num_clust_states << " clusters of states."; ClusterBottomUp(states, std::numeric_limits<BaseFloat>::max(), num_clust_states, NULL /*actual clusters not needed*/, &state_clusters /*get the cluster assignments*/); DeletePointers(&states); // For each cluster of states, create a pool of all the Gaussians in those // states, weighted by the state occupancies. This is done so that initially // only the Gaussians corresponding to "similar" states (similarity as // determined by the previous clustering) are merged. vector< vector<Clusterable*> > state_clust_gauss; state_clust_gauss.resize(num_clust_states); for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) { int32 current_cluster = state_clusters[pdf_index]; for (int32 num_gauss = am.GetPdf(pdf_index).NumGauss(), gauss_index = 0; gauss_index < num_gauss; ++gauss_index) { am.GetGaussianMean(pdf_index, gauss_index, &tmp_mean); am.GetGaussianVariance(pdf_index, gauss_index, &tmp_var); tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats. // adding 1.0e-10 to the weight will prevent problems later on, see // the line KALDI_ASSERT(weight > 0.0). BaseFloat this_weight = (1.0e-10 + state_occs(pdf_index)) * (am.GetPdf(pdf_index).weights())(gauss_index); tmp_mean.Scale(this_weight); tmp_var.Scale(this_weight); state_clust_gauss[current_cluster].push_back(new GaussClusterable( tmp_mean, tmp_var, opts.cluster_varfloor, this_weight)); } } // This is an unlikely operating scenario, no need to handle this in a more // optimized fashion. if (opts.intermediate_num_gauss > am.NumGauss()) { KALDI_WARN << "Intermediate num_gauss " << opts.intermediate_num_gauss << " is more than num-gauss " << am.NumGauss() << ", reducing it to " << am.NumGauss(); opts.intermediate_num_gauss = am.NumGauss(); } // The compartmentalized clusterer used below does not merge compartments. if (opts.intermediate_num_gauss < num_clust_states) { KALDI_WARN << "Intermediate num_gauss " << opts.intermediate_num_gauss << " is less than # of preclustered states " << num_clust_states << ", increasing it to " << num_clust_states; opts.intermediate_num_gauss = num_clust_states; } KALDI_VLOG(1) << "Merging from " << am.NumGauss() << " Gaussians in the " << "acoustic model, down to " << opts.intermediate_num_gauss << " Gaussians."; vector< vector<Clusterable*> > gauss_clusters_out; ClusterBottomUpCompartmentalized(state_clust_gauss, std::numeric_limits<BaseFloat>::max(), opts.intermediate_num_gauss, &gauss_clusters_out, NULL); for (int32 clust_index = 0; clust_index < num_clust_states; clust_index++) DeletePointers(&state_clust_gauss[clust_index]); // Next, put the remaining clustered Gaussians into a single GMM. KALDI_VLOG(1) << "Putting " << opts.intermediate_num_gauss << " Gaussians " << "into a single GMM for final merge step."; Matrix<BaseFloat> tmp_means(opts.intermediate_num_gauss, dim); Matrix<BaseFloat> tmp_vars(opts.intermediate_num_gauss, dim); Vector<BaseFloat> tmp_weights(opts.intermediate_num_gauss); Vector<BaseFloat> tmp_vec(dim); int32 gauss_index = 0; for (int32 clust_index = 0; clust_index < num_clust_states; clust_index++) { for (int32 i = gauss_clusters_out[clust_index].size()-1; i >=0; --i) { GaussClusterable *this_cluster = static_cast<GaussClusterable*>( gauss_clusters_out[clust_index][i]); BaseFloat weight = this_cluster->count(); KALDI_ASSERT(weight > 0.0); tmp_weights(gauss_index) = weight; tmp_vec.CopyFromVec(this_cluster->x_stats()); tmp_vec.Scale(1.0 / weight); tmp_means.CopyRowFromVec(tmp_vec, gauss_index); tmp_vec.CopyFromVec(this_cluster->x2_stats()); tmp_vec.Scale(1.0 / weight); tmp_vec.AddVec2(-1.0, tmp_means.Row(gauss_index)); // x^2 stats to var. tmp_vars.CopyRowFromVec(tmp_vec, gauss_index); gauss_index++; } DeletePointers(&(gauss_clusters_out[clust_index])); } tmp_gmm.Resize(opts.intermediate_num_gauss, dim); tmp_weights.Scale(1.0/tmp_weights.Sum()); tmp_gmm.SetWeights(tmp_weights); tmp_vars.InvertElements(); // need inverse vars... tmp_gmm.SetInvVarsAndMeans(tmp_vars, tmp_means); // Finally, cluster to the desired number of Gaussians in the UBM. if (opts.ubm_num_gauss < tmp_gmm.NumGauss()) { tmp_gmm.Merge(opts.ubm_num_gauss); KALDI_VLOG(1) << "Merged down to " << tmp_gmm.NumGauss() << " Gaussians."; } else { KALDI_WARN << "Not merging Gaussians since " << opts.ubm_num_gauss << " < " << tmp_gmm.NumGauss(); } ubm_out->CopyFromDiagGmm(tmp_gmm); } } // namespace kaldi |