am-diag-gmm.cc
13.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// gmm/am-diag-gmm.cc
// Copyright 2012 Arnab Ghoshal Johns Hopkins University (Author: Daniel Povey) Karel Vesely
// Copyright 2009-2011 Saarland University; Microsoft Corporation;
// Georg Stemmer
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
using std::vector;
#include "gmm/am-diag-gmm.h"
#include "util/stl-utils.h"
#include "tree/clusterable-classes.h"
#include "tree/cluster-utils.h"
namespace kaldi {
AmDiagGmm::~AmDiagGmm() {
DeletePointers(&densities_);
}
void AmDiagGmm::Init(const DiagGmm &proto, int32 num_pdfs) {
if (densities_.size() != 0) {
KALDI_WARN << "Init() called on a non-empty object. Contents will be "
"overwritten";
DeletePointers(&densities_);
}
if (num_pdfs == 0) {
KALDI_WARN << "Init() called with number of pdfs = 0. Will do nothing.";
return;
}
densities_.resize(num_pdfs, NULL);
for (vector<DiagGmm*>::iterator itr = densities_.begin(),
end = densities_.end(); itr != end; ++itr) {
*itr = new DiagGmm();
(*itr)->CopyFromDiagGmm(proto);
}
}
void AmDiagGmm::AddPdf(const DiagGmm &gmm) {
if (densities_.size() != 0) // not the first gmm
KALDI_ASSERT(gmm.Dim() == this->Dim());
DiagGmm *gmm_ptr = new DiagGmm();
gmm_ptr->CopyFromDiagGmm(gmm);
densities_.push_back(gmm_ptr);
}
void AmDiagGmm::RemovePdf(int32 pdf_index) {
KALDI_ASSERT(static_cast<size_t>(pdf_index) < densities_.size());
delete densities_[pdf_index];
densities_.erase(densities_.begin() + pdf_index);
}
int32 AmDiagGmm::NumGauss() const {
int32 ans = 0;
for (size_t i = 0; i < densities_.size(); i++)
ans += densities_[i]->NumGauss();
return ans;
}
void AmDiagGmm::CopyFromAmDiagGmm(const AmDiagGmm &other) {
if (densities_.size() != 0) {
DeletePointers(&densities_);
}
densities_.resize(other.NumPdfs(), NULL);
for (int32 i = 0, end = densities_.size(); i < end; i++) {
densities_[i] = new DiagGmm();
densities_[i]->CopyFromDiagGmm(*other.densities_[i]);
}
}
int32 AmDiagGmm::ComputeGconsts() {
int32 num_bad = 0;
for (std::vector<DiagGmm*>::iterator itr = densities_.begin(),
end = densities_.end(); itr != end; ++itr) {
num_bad += (*itr)->ComputeGconsts();
}
if (num_bad > 0)
KALDI_WARN << "Found " << num_bad << " Gaussian components.";
return num_bad;
}
void AmDiagGmm::SplitByCount(const Vector<BaseFloat> &state_occs,
int32 target_components,
float perturb_factor, BaseFloat power,
BaseFloat min_count) {
int32 gauss_at_start = NumGauss();
std::vector<int32> targets;
GetSplitTargets(state_occs, target_components, power,
min_count, &targets);
for (int32 i = 0; i < NumPdfs(); i++) {
if (densities_[i]->NumGauss() < targets[i])
densities_[i]->Split(targets[i], perturb_factor);
}
KALDI_LOG << "Split " << NumPdfs() << " states with target = "
<< target_components << ", power = " << power
<< ", perturb_factor = " << perturb_factor
<< " and min_count = " << min_count
<< ", split #Gauss from " << gauss_at_start << " to "
<< NumGauss();
}
void AmDiagGmm::MergeByCount(const Vector<BaseFloat> &state_occs,
int32 target_components,
BaseFloat power,
BaseFloat min_count) {
int32 gauss_at_start = NumGauss();
std::vector<int32> targets;
GetSplitTargets(state_occs, target_components,
power, min_count, &targets);
for (int32 i = 0; i < NumPdfs(); i++) {
if (targets[i] == 0) targets[i] = 1; // can't merge below 1.
if (densities_[i]->NumGauss() > targets[i])
densities_[i]->Merge(targets[i]);
}
KALDI_LOG << "Merged " << NumPdfs() << " states with target = "
<< target_components << ", power = " << power
<< " and min_count = " << min_count
<< ", merged from " << gauss_at_start << " to "
<< NumGauss();
}
void AmDiagGmm::Read(std::istream &in_stream, bool binary) {
int32 num_pdfs, dim;
ExpectToken(in_stream, binary, "<DIMENSION>");
ReadBasicType(in_stream, binary, &dim);
ExpectToken(in_stream, binary, "<NUMPDFS>");
ReadBasicType(in_stream, binary, &num_pdfs);
KALDI_ASSERT(num_pdfs > 0);
densities_.reserve(num_pdfs);
for (int32 i = 0; i < num_pdfs; i++) {
densities_.push_back(new DiagGmm());
densities_.back()->Read(in_stream, binary);
KALDI_ASSERT(densities_.back()->Dim() == dim);
}
}
void AmDiagGmm::Write(std::ostream &out_stream, bool binary) const {
int32 dim = this->Dim();
if (dim == 0) {
KALDI_WARN << "Trying to write empty AmDiagGmm object.";
}
WriteToken(out_stream, binary, "<DIMENSION>");
WriteBasicType(out_stream, binary, dim);
WriteToken(out_stream, binary, "<NUMPDFS>");
WriteBasicType(out_stream, binary, static_cast<int32>(densities_.size()));
for (std::vector<DiagGmm*>::const_iterator it = densities_.begin(),
end = densities_.end(); it != end; ++it) {
(*it)->Write(out_stream, binary);
}
}
void UbmClusteringOptions::Check() {
if (ubm_num_gauss > intermediate_num_gauss)
KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss
<< " > --intermediate-num_gauss=" << intermediate_num_gauss;
if (ubm_num_gauss > max_am_gauss)
KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss
<< " > --max-am-gauss=" << max_am_gauss;
if (ubm_num_gauss <= 0)
KALDI_ERR << "Invalid parameters: --ubm-num_gauss=" << ubm_num_gauss;
if (cluster_varfloor <= 0)
KALDI_ERR << "Invalid parameters: --cluster-varfloor="
<< cluster_varfloor;
if (reduce_state_factor <= 0 || reduce_state_factor > 1)
KALDI_ERR << "Invalid parameters: --reduce-state-factor="
<< reduce_state_factor;
}
void ClusterGaussiansToUbm(const AmDiagGmm &am,
const Vector<BaseFloat> &state_occs,
UbmClusteringOptions opts,
DiagGmm *ubm_out) {
opts.Check(); // Make sure the various # of Gaussians make sense.
if (am.NumGauss() > opts.max_am_gauss) {
KALDI_LOG << "ClusterGaussiansToUbm: first reducing num-gauss from " << am.NumGauss()
<< " to " << opts.max_am_gauss;
AmDiagGmm tmp_am;
tmp_am.CopyFromAmDiagGmm(am);
BaseFloat power = 1.0, min_count = 1.0; // Make the power 1, which I feel
// is appropriate to the way we're doing the overall clustering procedure.
tmp_am.MergeByCount(state_occs, opts.max_am_gauss, power, min_count);
if (tmp_am.NumGauss() > opts.max_am_gauss) {
KALDI_LOG << "Clustered down to " << tmp_am.NumGauss()
<< "; will not cluster further";
opts.max_am_gauss = tmp_am.NumGauss();
}
ClusterGaussiansToUbm(tmp_am, state_occs, opts, ubm_out);
return;
}
int32 num_pdfs = static_cast<int32>(am.NumPdfs()),
dim = am.Dim(),
num_clust_states = static_cast<int32>(opts.reduce_state_factor*num_pdfs);
Vector<BaseFloat> tmp_mean(dim);
Vector<BaseFloat> tmp_var(dim);
DiagGmm tmp_gmm;
vector<Clusterable*> states;
states.reserve(num_pdfs); // NOT resize(); uses push_back.
// Replace the GMM for each state with a single Gaussian.
KALDI_VLOG(1) << "Merging densities to 1 Gaussian per state.";
for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) {
KALDI_VLOG(3) << "Merging Gausians for state : " << pdf_index;
tmp_gmm.CopyFromDiagGmm(am.GetPdf(pdf_index));
tmp_gmm.Merge(1);
tmp_gmm.GetComponentMean(0, &tmp_mean);
tmp_gmm.GetComponentVariance(0, &tmp_var);
tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats.
// It may cause problems downstream if we add states with zero weights (see
// KALDI_ASSERT(weight > 0) below), so we put in a very small floor.
// These states with tiny weights will later get merged into other states.
BaseFloat this_weight = 1.0e-10 + state_occs(pdf_index);
tmp_mean.Scale(this_weight);
tmp_var.Scale(this_weight);
states.push_back(new GaussClusterable(tmp_mean, tmp_var,
opts.cluster_varfloor, this_weight));
}
// Bottom-up clustering of the Gaussians corresponding to each state, which
// gives a partial clustering of states in the 'state_clusters' vector.
vector<int32> state_clusters;
KALDI_VLOG(1) << "Creating " << num_clust_states << " clusters of states.";
ClusterBottomUp(states, std::numeric_limits<BaseFloat>::max(), num_clust_states,
NULL /*actual clusters not needed*/,
&state_clusters /*get the cluster assignments*/);
DeletePointers(&states);
// For each cluster of states, create a pool of all the Gaussians in those
// states, weighted by the state occupancies. This is done so that initially
// only the Gaussians corresponding to "similar" states (similarity as
// determined by the previous clustering) are merged.
vector< vector<Clusterable*> > state_clust_gauss;
state_clust_gauss.resize(num_clust_states);
for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) {
int32 current_cluster = state_clusters[pdf_index];
for (int32 num_gauss = am.GetPdf(pdf_index).NumGauss(),
gauss_index = 0; gauss_index < num_gauss; ++gauss_index) {
am.GetGaussianMean(pdf_index, gauss_index, &tmp_mean);
am.GetGaussianVariance(pdf_index, gauss_index, &tmp_var);
tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats.
// adding 1.0e-10 to the weight will prevent problems later on, see
// the line KALDI_ASSERT(weight > 0.0).
BaseFloat this_weight = (1.0e-10 + state_occs(pdf_index)) *
(am.GetPdf(pdf_index).weights())(gauss_index);
tmp_mean.Scale(this_weight);
tmp_var.Scale(this_weight);
state_clust_gauss[current_cluster].push_back(new GaussClusterable(
tmp_mean, tmp_var, opts.cluster_varfloor, this_weight));
}
}
// This is an unlikely operating scenario, no need to handle this in a more
// optimized fashion.
if (opts.intermediate_num_gauss > am.NumGauss()) {
KALDI_WARN << "Intermediate num_gauss " << opts.intermediate_num_gauss
<< " is more than num-gauss " << am.NumGauss()
<< ", reducing it to " << am.NumGauss();
opts.intermediate_num_gauss = am.NumGauss();
}
// The compartmentalized clusterer used below does not merge compartments.
if (opts.intermediate_num_gauss < num_clust_states) {
KALDI_WARN << "Intermediate num_gauss " << opts.intermediate_num_gauss
<< " is less than # of preclustered states " << num_clust_states
<< ", increasing it to " << num_clust_states;
opts.intermediate_num_gauss = num_clust_states;
}
KALDI_VLOG(1) << "Merging from " << am.NumGauss() << " Gaussians in the "
<< "acoustic model, down to " << opts.intermediate_num_gauss
<< " Gaussians.";
vector< vector<Clusterable*> > gauss_clusters_out;
ClusterBottomUpCompartmentalized(state_clust_gauss, std::numeric_limits<BaseFloat>::max(),
opts.intermediate_num_gauss,
&gauss_clusters_out, NULL);
for (int32 clust_index = 0; clust_index < num_clust_states; clust_index++)
DeletePointers(&state_clust_gauss[clust_index]);
// Next, put the remaining clustered Gaussians into a single GMM.
KALDI_VLOG(1) << "Putting " << opts.intermediate_num_gauss << " Gaussians "
<< "into a single GMM for final merge step.";
Matrix<BaseFloat> tmp_means(opts.intermediate_num_gauss, dim);
Matrix<BaseFloat> tmp_vars(opts.intermediate_num_gauss, dim);
Vector<BaseFloat> tmp_weights(opts.intermediate_num_gauss);
Vector<BaseFloat> tmp_vec(dim);
int32 gauss_index = 0;
for (int32 clust_index = 0; clust_index < num_clust_states; clust_index++) {
for (int32 i = gauss_clusters_out[clust_index].size()-1; i >=0; --i) {
GaussClusterable *this_cluster = static_cast<GaussClusterable*>(
gauss_clusters_out[clust_index][i]);
BaseFloat weight = this_cluster->count();
KALDI_ASSERT(weight > 0.0);
tmp_weights(gauss_index) = weight;
tmp_vec.CopyFromVec(this_cluster->x_stats());
tmp_vec.Scale(1.0 / weight);
tmp_means.CopyRowFromVec(tmp_vec, gauss_index);
tmp_vec.CopyFromVec(this_cluster->x2_stats());
tmp_vec.Scale(1.0 / weight);
tmp_vec.AddVec2(-1.0, tmp_means.Row(gauss_index)); // x^2 stats to var.
tmp_vars.CopyRowFromVec(tmp_vec, gauss_index);
gauss_index++;
}
DeletePointers(&(gauss_clusters_out[clust_index]));
}
tmp_gmm.Resize(opts.intermediate_num_gauss, dim);
tmp_weights.Scale(1.0/tmp_weights.Sum());
tmp_gmm.SetWeights(tmp_weights);
tmp_vars.InvertElements(); // need inverse vars...
tmp_gmm.SetInvVarsAndMeans(tmp_vars, tmp_means);
// Finally, cluster to the desired number of Gaussians in the UBM.
if (opts.ubm_num_gauss < tmp_gmm.NumGauss()) {
tmp_gmm.Merge(opts.ubm_num_gauss);
KALDI_VLOG(1) << "Merged down to " << tmp_gmm.NumGauss() << " Gaussians.";
} else {
KALDI_WARN << "Not merging Gaussians since " << opts.ubm_num_gauss
<< " < " << tmp_gmm.NumGauss();
}
ubm_out->CopyFromDiagGmm(tmp_gmm);
}
} // namespace kaldi