Blame view
src/gmm/diag-gmm.cc
34.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
// gmm/diag-gmm.cc // Copyright 2009-2011 Microsoft Corporation; // Saarland University (Author: Arnab Ghoshal); // Georg Stemmer; Jan Silovsky // 2012 Arnab Ghoshal // 2013-2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include <functional> #include <limits> #include <string> #include <vector> #include "gmm/diag-gmm.h" #include "gmm/diag-gmm-normal.h" #include "gmm/full-gmm.h" #include "gmm/full-gmm-normal.h" #include "tree/clusterable-classes.h" namespace kaldi { // Constructor that allows us to merge GMMs. DiagGmm::DiagGmm(const std::vector<std::pair<BaseFloat, const DiagGmm*> > &gmms) : valid_gconsts_(false) { if (gmms.empty()) { return; // GMM will be empty. } else { int32 num_gauss = 0, dim = gmms[0].second->Dim(); for (size_t i = 0; i < gmms.size(); i++) num_gauss += gmms[i].second->NumGauss(); Resize(num_gauss, dim); int32 cur_gauss = 0; for (size_t i = 0; i < gmms.size(); i++) { BaseFloat weight = gmms[i].first; KALDI_ASSERT(weight > 0.0); const DiagGmm &gmm = *(gmms[i].second); for (int32 g = 0; g < gmm.NumGauss(); g++, cur_gauss++) { means_invvars_.Row(cur_gauss).CopyFromVec(gmm.means_invvars().Row(g)); inv_vars_.Row(cur_gauss).CopyFromVec(gmm.inv_vars().Row(g)); weights_(cur_gauss) = weight * gmm.weights()(g); } } KALDI_ASSERT(cur_gauss == NumGauss()); ComputeGconsts(); } } void DiagGmm::Resize(int32 nmix, int32 dim) { KALDI_ASSERT(nmix > 0 && dim > 0); if (gconsts_.Dim() != nmix) gconsts_.Resize(nmix); if (weights_.Dim() != nmix) weights_.Resize(nmix); if (inv_vars_.NumRows() != nmix || inv_vars_.NumCols() != dim) { inv_vars_.Resize(nmix, dim); inv_vars_.Set(1.0); // must be initialized to unit for case of calling SetMeans while having // covars/invcovars that are not set yet (i.e. zero) } if (means_invvars_.NumRows() != nmix || means_invvars_.NumCols() != dim) means_invvars_.Resize(nmix, dim); valid_gconsts_ = false; } void DiagGmm::CopyFromDiagGmm(const DiagGmm &diaggmm) { Resize(diaggmm.weights_.Dim(), diaggmm.means_invvars_.NumCols()); gconsts_.CopyFromVec(diaggmm.gconsts_); weights_.CopyFromVec(diaggmm.weights_); inv_vars_.CopyFromMat(diaggmm.inv_vars_); means_invvars_.CopyFromMat(diaggmm.means_invvars_); valid_gconsts_ = diaggmm.valid_gconsts_; } void DiagGmm::CopyFromFullGmm(const FullGmm &fullgmm) { int32 num_comp = fullgmm.NumGauss(), dim = fullgmm.Dim(); Resize(num_comp, dim); gconsts_.CopyFromVec(fullgmm.gconsts()); weights_.CopyFromVec(fullgmm.weights()); Matrix<BaseFloat> means(num_comp, dim); fullgmm.GetMeans(&means); int32 ncomp = NumGauss(); for (int32 mix = 0; mix < ncomp; mix++) { SpMatrix<double> covar(dim); covar.CopyFromSp(fullgmm.inv_covars()[mix]); covar.Invert(); Vector<double> diag(dim); diag.CopyDiagFromPacked(covar); diag.InvertElements(); inv_vars_.Row(mix).CopyFromVec(diag); } means_invvars_.CopyFromMat(means); means_invvars_.MulElements(inv_vars_); ComputeGconsts(); } int32 DiagGmm::ComputeGconsts() { int32 num_mix = NumGauss(); int32 dim = Dim(); BaseFloat offset = -0.5 * M_LOG_2PI * dim; // constant term in gconst. int32 num_bad = 0; // Resize if Gaussians have been removed during Update() if (num_mix != static_cast<int32>(gconsts_.Dim())) gconsts_.Resize(num_mix); for (int32 mix = 0; mix < num_mix; mix++) { KALDI_ASSERT(weights_(mix) >= 0); // Cannot have negative weights. BaseFloat gc = Log(weights_(mix)) + offset; // May be -inf if weights == 0 for (int32 d = 0; d < dim; d++) { gc += 0.5 * Log(inv_vars_(mix, d)) - 0.5 * means_invvars_(mix, d) * means_invvars_(mix, d) / inv_vars_(mix, d); } // Change sign for logdet because var is inverted. Also, note that // mean_invvars(mix, d)*mean_invvars(mix, d)/inv_vars(mix, d) is the // mean-squared times inverse variance, since mean_invvars(mix, d) contains // the mean times inverse variance. // So gc is the likelihood at zero feature value. if (KALDI_ISNAN(gc)) { // negative infinity is OK but NaN is not acceptable KALDI_ERR << "At component " << mix << ", not a number in gconst computation"; } if (KALDI_ISINF(gc)) { num_bad++; // If positive infinity, make it negative infinity. // Want to make sure the answer becomes -inf in the end, not NaN. if (gc > 0) gc = -gc; } gconsts_(mix) = gc; } valid_gconsts_ = true; return num_bad; } void DiagGmm::Split(int32 target_components, float perturb_factor, std::vector<int32> *history) { if (target_components < NumGauss() || NumGauss() == 0) { KALDI_ERR << "Cannot split from " << NumGauss() << " to " << target_components << " components"; } if (target_components == NumGauss()) { KALDI_WARN << "Already have the target # of Gaussians. Doing nothing."; return; } int32 current_components = NumGauss(), dim = Dim(); DiagGmm *tmp = new DiagGmm; tmp->CopyFromDiagGmm(*this); // so we have copies of matrices // First do the resize: weights_.Resize(target_components); weights_.Range(0, current_components).CopyFromVec(tmp->weights_); means_invvars_.Resize(target_components, dim); means_invvars_.Range(0, current_components, 0, dim).CopyFromMat( tmp->means_invvars_); inv_vars_.Resize(target_components, dim); inv_vars_.Range(0, current_components, 0, dim).CopyFromMat(tmp->inv_vars_); gconsts_.Resize(target_components); delete tmp; // future work(arnab): Use a priority queue instead? while (current_components < target_components) { BaseFloat max_weight = weights_(0); int32 max_idx = 0; for (int32 i = 1; i < current_components; i++) { if (weights_(i) > max_weight) { max_weight = weights_(i); max_idx = i; } } // remember what component was split if (history != NULL) history->push_back(max_idx); weights_(max_idx) /= 2; weights_(current_components) = weights_(max_idx); Vector<BaseFloat> rand_vec(dim); for (int32 i = 0; i < dim; i++) { rand_vec(i) = RandGauss() * std::sqrt(inv_vars_(max_idx, i)); // note, this looks wrong but is really right because it's the // means_invvars we're multiplying and they have the dimension // of an inverse standard variance. [dan] } inv_vars_.Row(current_components).CopyFromVec(inv_vars_.Row(max_idx)); means_invvars_.Row(current_components).CopyFromVec(means_invvars_.Row( max_idx)); means_invvars_.Row(current_components).AddVec(perturb_factor, rand_vec); means_invvars_.Row(max_idx).AddVec(-perturb_factor, rand_vec); current_components++; } ComputeGconsts(); } void DiagGmm::Perturb(float perturb_factor) { int32 num_comps = NumGauss(), dim = Dim(); Matrix<BaseFloat> rand_mat(num_comps, dim); for (int32 i = 0; i < num_comps; i++) { for (int32 d = 0; d < dim; d++) { rand_mat(i, d) = RandGauss() * std::sqrt(inv_vars_(i, d)); // as in DiagGmm::Split, we perturb the means_invvars using a random // fraction of inv_vars_ } } means_invvars_.AddMat(perturb_factor, rand_mat, kNoTrans); ComputeGconsts(); } void DiagGmm::MergeKmeans(int32 target_components, ClusterKMeansOptions cfg) { if (target_components <= 0 || NumGauss() < target_components) { KALDI_ERR << "Invalid argument for target number of Gaussians (=" << target_components << "), #Gauss = " << NumGauss(); } if (NumGauss() == target_components) { KALDI_VLOG(2) << "No components merged, as target (" << target_components << ") = total."; return; // Nothing to do. } double min_var = 1.0e-10; std::vector<Clusterable*> clusterable_vec; for (int32 g = 0; g < NumGauss(); g++) { if (weights_(g) == 0) { KALDI_WARN << "Not using zero-weight Gaussians in clustering."; continue; } Vector<BaseFloat> x_stats(Dim()), x2_stats(Dim()); BaseFloat count = weights_(g); SubVector<BaseFloat> inv_var(inv_vars_, g), mean_invvar(means_invvars_, g); x_stats.AddVecDivVec(1.0, mean_invvar, inv_var, count); // x_stats is now mean. x2_stats.CopyFromVec(inv_var); x2_stats.InvertElements(); // x2_stats is now var. x2_stats.AddVec2(1.0, x_stats); // x2_stats is now var + mean^2 x_stats.Scale(count); // x_stats is now scaled by count. x2_stats.Scale(count); // x2_stats is now scaled by count. clusterable_vec.push_back(new GaussClusterable(x_stats, x2_stats, min_var, count)); } if (clusterable_vec.size() <= target_components) { KALDI_WARN << "Not doing clustering phase since lost too many Gaussians " << "due to zero weight. Warning: zero-weight Gaussians are " << "still there."; DeletePointers(&clusterable_vec); return; } else { std::vector<Clusterable*> clusters; ClusterKMeans(clusterable_vec, target_components, &clusters, NULL, cfg); Resize(clusters.size(), Dim()); for (int32 g = 0; g < static_cast<int32>(clusters.size()); g++) { GaussClusterable *gc = static_cast<GaussClusterable*>(clusters[g]); weights_(g) = gc->count(); SubVector<BaseFloat> inv_var(inv_vars_, g), mean_invvar(means_invvars_, g); inv_var.CopyFromVec(gc->x2_stats()); inv_var.Scale(1.0 / gc->count()); // inv_var is now the var + mean^2 mean_invvar.CopyFromVec(gc->x_stats()); mean_invvar.Scale(1.0 / gc->count()); // mean_invvar is now the mean. inv_var.AddVec2(-1.0, mean_invvar); // subtract mean^2; inv_var is now the var inv_var.InvertElements(); // inv_var is now the inverse var. mean_invvar.MulElements(inv_var); // mean_invvar is now mean * inverse var. } ComputeGconsts(); DeletePointers(&clusterable_vec); DeletePointers(&clusters); } } void DiagGmm::Merge(int32 target_components, std::vector<int32> *history) { if (target_components <= 0 || NumGauss() < target_components) { KALDI_ERR << "Invalid argument for target number of Gaussians (=" << target_components << "), #Gauss = " << NumGauss(); } if (NumGauss() == target_components) { KALDI_VLOG(2) << "No components merged, as target (" << target_components << ") = total."; return; // Nothing to do. } int32 num_comp = NumGauss(), dim = Dim(); if (target_components == 1) { // global mean and variance Vector<BaseFloat> weights(weights_); // Undo variance inversion and multiplication of mean by inv var. Matrix<BaseFloat> vars(inv_vars_); Matrix<BaseFloat> means(means_invvars_); vars.InvertElements(); means.MulElements(vars); // add means square to variances; get second-order stats for (int32 i = 0; i < num_comp; i++) { vars.Row(i).AddVec2(1.0, means.Row(i)); } // Slightly more efficient than calling this->Resize(1, dim) gconsts_.Resize(1); weights_.Resize(1); means_invvars_.Resize(1, dim); inv_vars_.Resize(1, dim); for (int32 i = 0; i < num_comp; i++) { weights_(0) += weights(i); means_invvars_.Row(0).AddVec(weights(i), means.Row(i)); inv_vars_.Row(0).AddVec(weights(i), vars.Row(i)); } if (!ApproxEqual(weights_(0), 1.0, 1e-6)) { KALDI_WARN << "Weights sum to " << weights_(0) << ": rescaling."; means_invvars_.Scale(weights_(0)); inv_vars_.Scale(weights_(0)); weights_(0) = 1.0; } inv_vars_.Row(0).AddVec2(-1.0, means_invvars_.Row(0)); inv_vars_.InvertElements(); means_invvars_.MulElements(inv_vars_); ComputeGconsts(); return; } // If more than 1 merged component is required, use the hierarchical // clustering of components that lead to the smallest decrease in likelihood. std::vector<bool> discarded_component(num_comp); Vector<BaseFloat> logdet(num_comp); // logdet for each component for (int32 i = 0; i < num_comp; i++) { discarded_component[i] = false; for (int32 d = 0; d < dim; d++) { logdet(i) += 0.5 * Log(inv_vars_(i, d)); // +0.5 because var is inverted } } // Undo variance inversion and multiplication of mean by this // Makes copy of means and vars for all components - memory inefficient? Matrix<BaseFloat> vars(inv_vars_); Matrix<BaseFloat> means(means_invvars_); vars.InvertElements(); means.MulElements(vars); // add means square to variances; get second-order stats // (normalized by zero-order stats) for (int32 i = 0; i < num_comp; i++) { vars.Row(i).AddVec2(1.0, means.Row(i)); } // compute change of likelihood for all combinations of components SpMatrix<BaseFloat> delta_like(num_comp); for (int32 i = 0; i < num_comp; i++) { for (int32 j = 0; j < i; j++) { BaseFloat w1 = weights_(i), w2 = weights_(j), w_sum = w1 + w2; BaseFloat merged_logdet = merged_components_logdet(w1, w2, means.Row(i), means.Row(j), vars.Row(i), vars.Row(j)); delta_like(i, j) = w_sum * merged_logdet - w1 * logdet(i) - w2 * logdet(j); } } // Merge components with smallest impact on the loglike for (int32 removed = 0; removed < num_comp - target_components; removed++) { // Search for the least significant change in likelihood // (maximum of negative delta_likes) BaseFloat max_delta_like = -std::numeric_limits<BaseFloat>::max(); int32 max_i = -1, max_j = -1; for (int32 i = 0; i < NumGauss(); i++) { if (discarded_component[i]) continue; for (int32 j = 0; j < i; j++) { if (discarded_component[j]) continue; if (delta_like(i, j) > max_delta_like) { max_delta_like = delta_like(i, j); max_i = i; max_j = j; } } } // make sure that different components will be merged KALDI_ASSERT(max_i != max_j && max_i != -1 && max_j != -1); // remember the merge candidates if (history != NULL) { history->push_back(max_i); history->push_back(max_j); } // Merge components BaseFloat w1 = weights_(max_i), w2 = weights_(max_j); BaseFloat w_sum = w1 + w2; // merge means means.Row(max_i).AddVec(w2/w1, means.Row(max_j)); means.Row(max_i).Scale(w1/w_sum); // merge vars vars.Row(max_i).AddVec(w2/w1, vars.Row(max_j)); vars.Row(max_i).Scale(w1/w_sum); // merge weights weights_(max_i) = w_sum; // Update gmm for merged component // copy second-order stats (normalized by zero-order stats) inv_vars_.Row(max_i).CopyFromVec(vars.Row(max_i)); // centralize inv_vars_.Row(max_i).AddVec2(-1.0, means.Row(max_i)); // invert inv_vars_.Row(max_i).InvertElements(); // copy first-order stats (normalized by zero-order stats) means_invvars_.Row(max_i).CopyFromVec(means.Row(max_i)); // multiply by inv_vars means_invvars_.Row(max_i).MulElements(inv_vars_.Row(max_i)); // Update logdet for merged component logdet(max_i) = 0.0; for (int32 d = 0; d < dim; d++) { logdet(max_i) += 0.5 * Log(inv_vars_(max_i, d)); // +0.5 because var is inverted } // Label the removed component as discarded discarded_component[max_j] = true; // Update delta_like for merged component for (int32 j = 0; j < num_comp; j++) { if ((j == max_i) || (discarded_component[j])) continue; BaseFloat w1 = weights_(max_i), w2 = weights_(j), w_sum = w1 + w2; BaseFloat merged_logdet = merged_components_logdet(w1, w2, means.Row(max_i), means.Row(j), vars.Row(max_i), vars.Row(j)); delta_like(max_i, j) = w_sum * merged_logdet - w1 * logdet(max_i) - w2 * logdet(j); // doesn't respect lower triangular indeces, // relies on implicitly performed swap of coordinates if necessary } } // Remove the consumed components int32 m = 0; for (int32 i = 0; i < num_comp; i++) { if (discarded_component[i]) { weights_.RemoveElement(m); means_invvars_.RemoveRow(m); inv_vars_.RemoveRow(m); } else { ++m; } } ComputeGconsts(); } BaseFloat DiagGmm::merged_components_logdet(BaseFloat w1, BaseFloat w2, const VectorBase<BaseFloat> &f1, const VectorBase<BaseFloat> &f2, const VectorBase<BaseFloat> &s1, const VectorBase<BaseFloat> &s2) const { int32 dim = f1.Dim(); Vector<BaseFloat> tmp_mean(dim); Vector<BaseFloat> tmp_var(dim); BaseFloat w_sum = w1 + w2; tmp_mean.CopyFromVec(f1); tmp_mean.AddVec(w2/w1, f2); tmp_mean.Scale(w1/w_sum); tmp_var.CopyFromVec(s1); tmp_var.AddVec(w2/w1, s2); tmp_var.Scale(w1/w_sum); tmp_var.AddVec2(-1.0, tmp_mean); BaseFloat merged_logdet = 0.0; for (int32 d = 0; d < dim; d++) { merged_logdet -= 0.5 * Log(tmp_var(d)); // -0.5 because var is not inverted } return merged_logdet; } BaseFloat DiagGmm::ComponentLogLikelihood(const VectorBase<BaseFloat> &data, int32 comp_id) const { if (!valid_gconsts_) KALDI_ERR << "Must call ComputeGconsts() before computing likelihood"; if (static_cast<int32>(data.Dim()) != Dim()) { KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension " << "mismatch " << (data.Dim()) << " vs. "<< (Dim()); } BaseFloat loglike; Vector<BaseFloat> data_sq(data); data_sq.ApplyPow(2.0); // loglike = means * inv(vars) * data. loglike = VecVec(means_invvars_.Row(comp_id), data); // loglike += -0.5 * inv(vars) * data_sq. loglike -= 0.5 * VecVec(inv_vars_.Row(comp_id), data_sq); return loglike + gconsts_(comp_id); } // Gets likelihood of data given this. BaseFloat DiagGmm::LogLikelihood(const VectorBase<BaseFloat> &data) const { if (!valid_gconsts_) KALDI_ERR << "Must call ComputeGconsts() before computing likelihood"; Vector<BaseFloat> loglikes; LogLikelihoods(data, &loglikes); BaseFloat log_sum = loglikes.LogSumExp(); if (KALDI_ISNAN(log_sum) || KALDI_ISINF(log_sum)) KALDI_ERR << "Invalid answer (overflow or invalid variances/features?)"; return log_sum; } void DiagGmm::LogLikelihoods(const VectorBase<BaseFloat> &data, Vector<BaseFloat> *loglikes) const { loglikes->Resize(gconsts_.Dim(), kUndefined); loglikes->CopyFromVec(gconsts_); if (data.Dim() != Dim()) { KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension " << "mismatch " << data.Dim() << " vs. "<< Dim(); } Vector<BaseFloat> data_sq(data); data_sq.ApplyPow(2.0); // loglikes += means * inv(vars) * data. loglikes->AddMatVec(1.0, means_invvars_, kNoTrans, data, 1.0); // loglikes += -0.5 * inv(vars) * data_sq. loglikes->AddMatVec(-0.5, inv_vars_, kNoTrans, data_sq, 1.0); } void DiagGmm::LogLikelihoods(const MatrixBase<BaseFloat> &data, Matrix<BaseFloat> *loglikes) const { KALDI_ASSERT(data.NumRows() != 0); loglikes->Resize(data.NumRows(), gconsts_.Dim(), kUndefined); loglikes->CopyRowsFromVec(gconsts_); if (data.NumCols() != Dim()) { KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension " << "mismatch " << data.NumCols() << " vs. "<< Dim(); } Matrix<BaseFloat> data_sq(data); data_sq.ApplyPow(2.0); // loglikes += means * inv(vars) * data. loglikes->AddMatMat(1.0, data, kNoTrans, means_invvars_, kTrans, 1.0); // loglikes += -0.5 * inv(vars) * data_sq. loglikes->AddMatMat(-0.5, data_sq, kNoTrans, inv_vars_, kTrans, 1.0); } void DiagGmm::LogLikelihoodsPreselect(const VectorBase<BaseFloat> &data, const std::vector<int32> &indices, Vector<BaseFloat> *loglikes) const { KALDI_ASSERT(data.Dim() == Dim()); Vector<BaseFloat> data_sq(data); data_sq.ApplyPow(2.0); int32 num_indices = static_cast<int32>(indices.size()); loglikes->Resize(num_indices, kUndefined); if (indices.back() + 1 - indices.front() == num_indices) { // A special (but common) case when the indices form a contiguous range. int32 start_idx = indices.front(); loglikes->CopyFromVec(SubVector<BaseFloat>(gconsts_, start_idx, num_indices)); // loglikes += means * inv(vars) * data. SubMatrix<BaseFloat> means_invvars_sub(means_invvars_, start_idx, num_indices, 0, Dim()); loglikes->AddMatVec(1.0, means_invvars_sub, kNoTrans, data, 1.0); SubMatrix<BaseFloat> inv_vars_sub(inv_vars_, start_idx, num_indices, 0, Dim()); // loglikes += -0.5 * inv(vars) * data_sq. loglikes->AddMatVec(-0.5, inv_vars_sub, kNoTrans, data_sq, 1.0); } else { for (int32 i = 0; i < num_indices; i++) { int32 idx = indices[i]; // The Gaussian index. BaseFloat this_loglike = gconsts_(idx) + VecVec(means_invvars_.Row(idx), data) - 0.5*VecVec(inv_vars_.Row(idx), data_sq); (*loglikes)(i) = this_loglike; } } } // Gets likelihood of data given this. Also provides per-Gaussian posteriors. BaseFloat DiagGmm::ComponentPosteriors(const VectorBase<BaseFloat> &data, Vector<BaseFloat> *posterior) const { if (!valid_gconsts_) KALDI_ERR << "Must call ComputeGconsts() before computing likelihood"; if (posterior == NULL) KALDI_ERR << "NULL pointer passed as return argument."; Vector<BaseFloat> loglikes; LogLikelihoods(data, &loglikes); BaseFloat log_sum = loglikes.ApplySoftMax(); if (KALDI_ISNAN(log_sum) || KALDI_ISINF(log_sum)) KALDI_ERR << "Invalid answer (overflow or invalid variances/features?)"; if (posterior->Dim() != loglikes.Dim()) posterior->Resize(loglikes.Dim()); posterior->CopyFromVec(loglikes); return log_sum; } void DiagGmm::RemoveComponent(int32 gauss, bool renorm_weights) { KALDI_ASSERT(gauss < NumGauss()); if (NumGauss() == 1) KALDI_ERR << "Attempting to remove the only remaining component."; weights_.RemoveElement(gauss); gconsts_.RemoveElement(gauss); means_invvars_.RemoveRow(gauss); inv_vars_.RemoveRow(gauss); BaseFloat sum_weights = weights_.Sum(); if (renorm_weights) { weights_.Scale(1.0/sum_weights); valid_gconsts_ = false; } } void DiagGmm::RemoveComponents(const std::vector<int32> &gauss_in, bool renorm_weights) { std::vector<int32> gauss(gauss_in); std::sort(gauss.begin(), gauss.end()); KALDI_ASSERT(IsSortedAndUniq(gauss)); // If efficiency is later an issue, will code this specially (unlikely). for (size_t i = 0; i < gauss.size(); i++) { RemoveComponent(gauss[i], renorm_weights); for (size_t j = i + 1; j < gauss.size(); j++) gauss[j]--; } } void DiagGmm::Interpolate(BaseFloat rho, const DiagGmm &source, GmmFlagsType flags) { KALDI_ASSERT(NumGauss() == source.NumGauss()); KALDI_ASSERT(Dim() == source.Dim()); DiagGmmNormal us(*this); DiagGmmNormal them(source); if (flags & kGmmWeights) { us.weights_.Scale(1.0 - rho); us.weights_.AddVec(rho, them.weights_); us.weights_.Scale(1.0 / us.weights_.Sum()); } if (flags & kGmmMeans) { us.means_.Scale(1.0 - rho); us.means_.AddMat(rho, them.means_); } if (flags & kGmmVariances) { us.vars_.Scale(1.0 - rho); us.vars_.AddMat(rho, them.vars_); } us.CopyToDiagGmm(this); ComputeGconsts(); } void DiagGmm::Interpolate(BaseFloat rho, const FullGmm &source, GmmFlagsType flags) { KALDI_ASSERT(NumGauss() == source.NumGauss()); KALDI_ASSERT(Dim() == source.Dim()); DiagGmmNormal us(*this); FullGmmNormal them(source); if (flags & kGmmWeights) { us.weights_.Scale(1.0 - rho); us.weights_.AddVec(rho, them.weights_); us.weights_.Scale(1.0 / us.weights_.Sum()); } if (flags & kGmmMeans) { us.means_.Scale(1.0 - rho); us.means_.AddMat(rho, them.means_); } if (flags & kGmmVariances) { for (int32 i = 0; i < NumGauss(); i++) { us.vars_.Scale(1. - rho); Vector<double> diag(Dim()); for (int32 j = 0; j < Dim(); j++) diag(j) = them.vars_[i](j, j); us.vars_.Row(i).AddVec(rho, diag); } } us.CopyToDiagGmm(this); ComputeGconsts(); } void DiagGmm::Write(std::ostream &out_stream, bool binary) const { if (!valid_gconsts_) KALDI_ERR << "Must call ComputeGconsts() before writing the model."; WriteToken(out_stream, binary, "<DiagGMM>"); if (!binary) out_stream << " "; WriteToken(out_stream, binary, "<GCONSTS>"); gconsts_.Write(out_stream, binary); WriteToken(out_stream, binary, "<WEIGHTS>"); weights_.Write(out_stream, binary); WriteToken(out_stream, binary, "<MEANS_INVVARS>"); means_invvars_.Write(out_stream, binary); WriteToken(out_stream, binary, "<INV_VARS>"); inv_vars_.Write(out_stream, binary); WriteToken(out_stream, binary, "</DiagGMM>"); if (!binary) out_stream << " "; } std::ostream & operator <<(std::ostream & os, const kaldi::DiagGmm &gmm) { gmm.Write(os, false); return os; } void DiagGmm::Read(std::istream &is, bool binary) { // ExpectToken(is, binary, "<DiagGMMBegin>"); std::string token; ReadToken(is, binary, &token); // <DiagGMMBegin> is for compatibility. Will be deleted later if (token != "<DiagGMMBegin>" && token != "<DiagGMM>") KALDI_ERR << "Expected <DiagGMM>, got " << token; ReadToken(is, binary, &token); if (token == "<GCONSTS>") { // The gconsts are optional. gconsts_.Read(is, binary); ExpectToken(is, binary, "<WEIGHTS>"); } else { if (token != "<WEIGHTS>") KALDI_ERR << "DiagGmm::Read, expected <WEIGHTS> or <GCONSTS>, got " << token; } weights_.Read(is, binary); ExpectToken(is, binary, "<MEANS_INVVARS>"); means_invvars_.Read(is, binary); ExpectToken(is, binary, "<INV_VARS>"); inv_vars_.Read(is, binary); // ExpectToken(is, binary, "<DiagGMMEnd>"); ReadToken(is, binary, &token); // <DiagGMMEnd> is for compatibility. Will be deleted later if (token != "<DiagGMMEnd>" && token != "</DiagGMM>") KALDI_ERR << "Expected </DiagGMM>, got " << token; ComputeGconsts(); // safer option than trusting the read gconsts } std::istream & operator >>(std::istream &is, kaldi::DiagGmm &gmm) { gmm.Read(is, false); // false == non-binary. return is; } /// Get gaussian selection information for one frame. BaseFloat DiagGmm::GaussianSelection(const VectorBase<BaseFloat> &data, int32 num_gselect, std::vector<int32> *output) const { int32 num_gauss = NumGauss(); Vector<BaseFloat> loglikes(num_gauss, kUndefined); output->clear(); this->LogLikelihoods(data, &loglikes); BaseFloat thresh; if (num_gselect < num_gauss) { Vector<BaseFloat> loglikes_copy(loglikes); BaseFloat *ptr = loglikes_copy.Data(); std::nth_element(ptr, ptr+num_gauss-num_gselect, ptr+num_gauss); thresh = ptr[num_gauss-num_gselect]; } else { thresh = -std::numeric_limits<BaseFloat>::infinity(); } BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity(); std::vector<std::pair<BaseFloat, int32> > pairs; for (int32 p = 0; p < num_gauss; p++) { if (loglikes(p) >= thresh) { pairs.push_back(std::make_pair(loglikes(p), p)); } } std::sort(pairs.begin(), pairs.end(), std::greater<std::pair<BaseFloat, int32> >()); for (int32 j = 0; j < num_gselect && j < static_cast<int32>(pairs.size()); j++) { output->push_back(pairs[j].second); tot_loglike = LogAdd(tot_loglike, pairs[j].first); } KALDI_ASSERT(!output->empty()); return tot_loglike; } BaseFloat DiagGmm::GaussianSelection(const MatrixBase<BaseFloat> &data, int32 num_gselect, std::vector<std::vector<int32> > *output) const { double ans = 0.0; int32 num_frames = data.NumRows(), num_gauss = NumGauss(); int32 max_mem = 10000000; // Don't devote more than 10Mb to loglikes_mat; // break up the utterance if needed. int32 mem_needed = num_frames * num_gauss * sizeof(BaseFloat); if (mem_needed > max_mem) { // Break into parts and recurse, we don't want to consume too // much memory. int32 num_parts = (mem_needed + max_mem - 1) / max_mem; int32 part_frames = (data.NumRows() + num_parts - 1) / num_parts; double tot_ans = 0.0; std::vector<std::vector<int32> > part_output; output->clear(); output->resize(num_frames); for (int32 p = 0; p < num_parts; p++) { int32 start_frame = p * part_frames, this_num_frames = std::min(num_frames - start_frame, part_frames); SubMatrix<BaseFloat> data_part(data, start_frame, this_num_frames, 0, data.NumCols()); tot_ans += GaussianSelection(data_part, num_gselect, &part_output); for (int32 t = 0; t < this_num_frames; t++) (*output)[start_frame + t].swap(part_output[t]); } KALDI_ASSERT(!output->back().empty()); return tot_ans; } KALDI_ASSERT(num_frames != 0); Matrix<BaseFloat> loglikes_mat(num_frames, num_gauss, kUndefined); this->LogLikelihoods(data, &loglikes_mat); output->clear(); output->resize(num_frames); for (int32 i = 0; i < num_frames; i++) { SubVector<BaseFloat> loglikes(loglikes_mat, i); BaseFloat thresh; if (num_gselect < num_gauss) { Vector<BaseFloat> loglikes_copy(loglikes); BaseFloat *ptr = loglikes_copy.Data(); std::nth_element(ptr, ptr+num_gauss-num_gselect, ptr+num_gauss); thresh = ptr[num_gauss-num_gselect]; } else { thresh = -std::numeric_limits<BaseFloat>::infinity(); } BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity(); std::vector<std::pair<BaseFloat, int32> > pairs; for (int32 p = 0; p < num_gauss; p++) { if (loglikes(p) >= thresh) { pairs.push_back(std::make_pair(loglikes(p), p)); } } std::sort(pairs.begin(), pairs.end(), std::greater<std::pair<BaseFloat, int32> >()); std::vector<int32> &this_output = (*output)[i]; for (int32 j = 0; j < num_gselect && j < static_cast<int32>(pairs.size()); j++) { this_output.push_back(pairs[j].second); tot_loglike = LogAdd(tot_loglike, pairs[j].first); } KALDI_ASSERT(!this_output.empty()); ans += tot_loglike; } return ans; } BaseFloat DiagGmm::GaussianSelectionPreselect( const VectorBase<BaseFloat> &data, const std::vector<int32> &preselect, int32 num_gselect, std::vector<int32> *output) const { static bool warned_size = false; int32 preselect_sz = preselect.size(); int32 this_num_gselect = std::min(num_gselect, preselect_sz); if (preselect_sz <= num_gselect && !warned_size) { warned_size = true; KALDI_WARN << "Preselect size is less or equal to than final size, " << "doing nothing: " << preselect_sz << " < " << num_gselect << " [won't warn again]"; } Vector<BaseFloat> loglikes(preselect_sz); LogLikelihoodsPreselect(data, preselect, &loglikes); Vector<BaseFloat> loglikes_copy(loglikes); BaseFloat *ptr = loglikes_copy.Data(); std::nth_element(ptr, ptr+preselect_sz-this_num_gselect, ptr+preselect_sz); BaseFloat thresh = ptr[preselect_sz-this_num_gselect]; BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity(); // we want the output sorted from best likelihood to worse // (so we can prune further without the model)... std::vector<std::pair<BaseFloat, int32> > pairs; for (int32 p = 0; p < preselect_sz; p++) if (loglikes(p) >= thresh) pairs.push_back(std::make_pair(loglikes(p), preselect[p])); std::sort(pairs.begin(), pairs.end(), std::greater<std::pair<BaseFloat, int32> >()); output->clear(); for (int32 j = 0; j < this_num_gselect && j < static_cast<int32>(pairs.size()); j++) { output->push_back(pairs[j].second); tot_loglike = LogAdd(tot_loglike, pairs[j].first); } KALDI_ASSERT(!output->empty()); return tot_loglike; } void DiagGmm::CopyFromNormal(const DiagGmmNormal &diag_gmm_normal) { diag_gmm_normal.CopyToDiagGmm(this); } void DiagGmm::Generate(VectorBase<BaseFloat> *output) { KALDI_ASSERT(static_cast<int32>(output->Dim()) == Dim()); BaseFloat tot = weights_.Sum(); KALDI_ASSERT(tot > 0.0); double r = tot * RandUniform() * 0.99999; int32 i = 0; double sum = 0.0; while (sum + weights_(i) < r) { sum += weights_(i); i++; KALDI_ASSERT(i < static_cast<int32>(weights_.Dim())); } // now i is the index of the Gaussian we chose. SubVector<BaseFloat> inv_var(inv_vars_, i), mean_invvar(means_invvars_, i); for (int32 d = 0; d < inv_var.Dim(); d++) { BaseFloat stddev = 1.0 / sqrt(inv_var(d)), mean = mean_invvar(d) / inv_var(d); (*output)(d) = mean + RandGauss() * stddev; } } DiagGmm::DiagGmm(const GaussClusterable &gc, BaseFloat var_floor): valid_gconsts_(false) { Vector<BaseFloat> x (gc.x_stats()); Vector<BaseFloat> x2 (gc.x2_stats()); BaseFloat count = gc.count(); KALDI_ASSERT(count > 0.0); this->Resize(1, x.Dim()); x.Scale(1.0/count); x2.Scale(1.0/count); x2.AddVec2(-1.0, x); // subtract mean^2. x2.ApplyFloor(var_floor); x2.InvertElements(); // get inv-var. KALDI_ASSERT(x2.Min() > 0); Matrix<BaseFloat> mean(1, x.Dim()); mean.Row(0).CopyFromVec(x); Matrix<BaseFloat> inv_var(1, x.Dim()); inv_var.Row(0).CopyFromVec(x2); this->SetInvVarsAndMeans(inv_var, mean); Vector<BaseFloat> weights(1); weights(0) = 1.0; this->SetWeights(weights); this->ComputeGconsts(); } } // End namespace kaldi |