diag-gmm.cc
34.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
// gmm/diag-gmm.cc
// Copyright 2009-2011 Microsoft Corporation;
// Saarland University (Author: Arnab Ghoshal);
// Georg Stemmer; Jan Silovsky
// 2012 Arnab Ghoshal
// 2013-2014 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <functional>
#include <limits>
#include <string>
#include <vector>
#include "gmm/diag-gmm.h"
#include "gmm/diag-gmm-normal.h"
#include "gmm/full-gmm.h"
#include "gmm/full-gmm-normal.h"
#include "tree/clusterable-classes.h"
namespace kaldi {
// Constructor that allows us to merge GMMs.
DiagGmm::DiagGmm(const std::vector<std::pair<BaseFloat, const DiagGmm*> > &gmms)
: valid_gconsts_(false) {
if (gmms.empty()) {
return; // GMM will be empty.
} else {
int32 num_gauss = 0, dim = gmms[0].second->Dim();
for (size_t i = 0; i < gmms.size(); i++)
num_gauss += gmms[i].second->NumGauss();
Resize(num_gauss, dim);
int32 cur_gauss = 0;
for (size_t i = 0; i < gmms.size(); i++) {
BaseFloat weight = gmms[i].first;
KALDI_ASSERT(weight > 0.0);
const DiagGmm &gmm = *(gmms[i].second);
for (int32 g = 0; g < gmm.NumGauss(); g++, cur_gauss++) {
means_invvars_.Row(cur_gauss).CopyFromVec(gmm.means_invvars().Row(g));
inv_vars_.Row(cur_gauss).CopyFromVec(gmm.inv_vars().Row(g));
weights_(cur_gauss) = weight * gmm.weights()(g);
}
}
KALDI_ASSERT(cur_gauss == NumGauss());
ComputeGconsts();
}
}
void DiagGmm::Resize(int32 nmix, int32 dim) {
KALDI_ASSERT(nmix > 0 && dim > 0);
if (gconsts_.Dim() != nmix) gconsts_.Resize(nmix);
if (weights_.Dim() != nmix) weights_.Resize(nmix);
if (inv_vars_.NumRows() != nmix ||
inv_vars_.NumCols() != dim) {
inv_vars_.Resize(nmix, dim);
inv_vars_.Set(1.0);
// must be initialized to unit for case of calling SetMeans while having
// covars/invcovars that are not set yet (i.e. zero)
}
if (means_invvars_.NumRows() != nmix ||
means_invvars_.NumCols() != dim)
means_invvars_.Resize(nmix, dim);
valid_gconsts_ = false;
}
void DiagGmm::CopyFromDiagGmm(const DiagGmm &diaggmm) {
Resize(diaggmm.weights_.Dim(), diaggmm.means_invvars_.NumCols());
gconsts_.CopyFromVec(diaggmm.gconsts_);
weights_.CopyFromVec(diaggmm.weights_);
inv_vars_.CopyFromMat(diaggmm.inv_vars_);
means_invvars_.CopyFromMat(diaggmm.means_invvars_);
valid_gconsts_ = diaggmm.valid_gconsts_;
}
void DiagGmm::CopyFromFullGmm(const FullGmm &fullgmm) {
int32 num_comp = fullgmm.NumGauss(), dim = fullgmm.Dim();
Resize(num_comp, dim);
gconsts_.CopyFromVec(fullgmm.gconsts());
weights_.CopyFromVec(fullgmm.weights());
Matrix<BaseFloat> means(num_comp, dim);
fullgmm.GetMeans(&means);
int32 ncomp = NumGauss();
for (int32 mix = 0; mix < ncomp; mix++) {
SpMatrix<double> covar(dim);
covar.CopyFromSp(fullgmm.inv_covars()[mix]);
covar.Invert();
Vector<double> diag(dim);
diag.CopyDiagFromPacked(covar);
diag.InvertElements();
inv_vars_.Row(mix).CopyFromVec(diag);
}
means_invvars_.CopyFromMat(means);
means_invvars_.MulElements(inv_vars_);
ComputeGconsts();
}
int32 DiagGmm::ComputeGconsts() {
int32 num_mix = NumGauss();
int32 dim = Dim();
BaseFloat offset = -0.5 * M_LOG_2PI * dim; // constant term in gconst.
int32 num_bad = 0;
// Resize if Gaussians have been removed during Update()
if (num_mix != static_cast<int32>(gconsts_.Dim()))
gconsts_.Resize(num_mix);
for (int32 mix = 0; mix < num_mix; mix++) {
KALDI_ASSERT(weights_(mix) >= 0); // Cannot have negative weights.
BaseFloat gc = Log(weights_(mix)) + offset; // May be -inf if weights == 0
for (int32 d = 0; d < dim; d++) {
gc += 0.5 * Log(inv_vars_(mix, d)) - 0.5 * means_invvars_(mix, d)
* means_invvars_(mix, d) / inv_vars_(mix, d);
}
// Change sign for logdet because var is inverted. Also, note that
// mean_invvars(mix, d)*mean_invvars(mix, d)/inv_vars(mix, d) is the
// mean-squared times inverse variance, since mean_invvars(mix, d) contains
// the mean times inverse variance.
// So gc is the likelihood at zero feature value.
if (KALDI_ISNAN(gc)) { // negative infinity is OK but NaN is not acceptable
KALDI_ERR << "At component " << mix
<< ", not a number in gconst computation";
}
if (KALDI_ISINF(gc)) {
num_bad++;
// If positive infinity, make it negative infinity.
// Want to make sure the answer becomes -inf in the end, not NaN.
if (gc > 0) gc = -gc;
}
gconsts_(mix) = gc;
}
valid_gconsts_ = true;
return num_bad;
}
void DiagGmm::Split(int32 target_components, float perturb_factor,
std::vector<int32> *history) {
if (target_components < NumGauss() || NumGauss() == 0) {
KALDI_ERR << "Cannot split from " << NumGauss() << " to "
<< target_components << " components";
}
if (target_components == NumGauss()) {
KALDI_WARN << "Already have the target # of Gaussians. Doing nothing.";
return;
}
int32 current_components = NumGauss(), dim = Dim();
DiagGmm *tmp = new DiagGmm;
tmp->CopyFromDiagGmm(*this); // so we have copies of matrices
// First do the resize:
weights_.Resize(target_components);
weights_.Range(0, current_components).CopyFromVec(tmp->weights_);
means_invvars_.Resize(target_components, dim);
means_invvars_.Range(0, current_components, 0, dim).CopyFromMat(
tmp->means_invvars_);
inv_vars_.Resize(target_components, dim);
inv_vars_.Range(0, current_components, 0, dim).CopyFromMat(tmp->inv_vars_);
gconsts_.Resize(target_components);
delete tmp;
// future work(arnab): Use a priority queue instead?
while (current_components < target_components) {
BaseFloat max_weight = weights_(0);
int32 max_idx = 0;
for (int32 i = 1; i < current_components; i++) {
if (weights_(i) > max_weight) {
max_weight = weights_(i);
max_idx = i;
}
}
// remember what component was split
if (history != NULL)
history->push_back(max_idx);
weights_(max_idx) /= 2;
weights_(current_components) = weights_(max_idx);
Vector<BaseFloat> rand_vec(dim);
for (int32 i = 0; i < dim; i++) {
rand_vec(i) = RandGauss() * std::sqrt(inv_vars_(max_idx, i));
// note, this looks wrong but is really right because it's the
// means_invvars we're multiplying and they have the dimension
// of an inverse standard variance. [dan]
}
inv_vars_.Row(current_components).CopyFromVec(inv_vars_.Row(max_idx));
means_invvars_.Row(current_components).CopyFromVec(means_invvars_.Row(
max_idx));
means_invvars_.Row(current_components).AddVec(perturb_factor, rand_vec);
means_invvars_.Row(max_idx).AddVec(-perturb_factor, rand_vec);
current_components++;
}
ComputeGconsts();
}
void DiagGmm::Perturb(float perturb_factor) {
int32 num_comps = NumGauss(),
dim = Dim();
Matrix<BaseFloat> rand_mat(num_comps, dim);
for (int32 i = 0; i < num_comps; i++) {
for (int32 d = 0; d < dim; d++) {
rand_mat(i, d) = RandGauss() * std::sqrt(inv_vars_(i, d));
// as in DiagGmm::Split, we perturb the means_invvars using a random
// fraction of inv_vars_
}
}
means_invvars_.AddMat(perturb_factor, rand_mat, kNoTrans);
ComputeGconsts();
}
void DiagGmm::MergeKmeans(int32 target_components,
ClusterKMeansOptions cfg) {
if (target_components <= 0 || NumGauss() < target_components) {
KALDI_ERR << "Invalid argument for target number of Gaussians (="
<< target_components << "), #Gauss = " << NumGauss();
}
if (NumGauss() == target_components) {
KALDI_VLOG(2) << "No components merged, as target (" << target_components
<< ") = total.";
return; // Nothing to do.
}
double min_var = 1.0e-10;
std::vector<Clusterable*> clusterable_vec;
for (int32 g = 0; g < NumGauss(); g++) {
if (weights_(g) == 0) {
KALDI_WARN << "Not using zero-weight Gaussians in clustering.";
continue;
}
Vector<BaseFloat> x_stats(Dim()),
x2_stats(Dim());
BaseFloat count = weights_(g);
SubVector<BaseFloat> inv_var(inv_vars_, g),
mean_invvar(means_invvars_, g);
x_stats.AddVecDivVec(1.0, mean_invvar, inv_var, count); // x_stats is now mean.
x2_stats.CopyFromVec(inv_var);
x2_stats.InvertElements(); // x2_stats is now var.
x2_stats.AddVec2(1.0, x_stats); // x2_stats is now var + mean^2
x_stats.Scale(count); // x_stats is now scaled by count.
x2_stats.Scale(count); // x2_stats is now scaled by count.
clusterable_vec.push_back(new GaussClusterable(x_stats, x2_stats, min_var,
count));
}
if (clusterable_vec.size() <= target_components) {
KALDI_WARN << "Not doing clustering phase since lost too many Gaussians "
<< "due to zero weight. Warning: zero-weight Gaussians are "
<< "still there.";
DeletePointers(&clusterable_vec);
return;
} else {
std::vector<Clusterable*> clusters;
ClusterKMeans(clusterable_vec,
target_components,
&clusters, NULL, cfg);
Resize(clusters.size(), Dim());
for (int32 g = 0; g < static_cast<int32>(clusters.size()); g++) {
GaussClusterable *gc = static_cast<GaussClusterable*>(clusters[g]);
weights_(g) = gc->count();
SubVector<BaseFloat> inv_var(inv_vars_, g),
mean_invvar(means_invvars_, g);
inv_var.CopyFromVec(gc->x2_stats());
inv_var.Scale(1.0 / gc->count()); // inv_var is now the var + mean^2
mean_invvar.CopyFromVec(gc->x_stats());
mean_invvar.Scale(1.0 / gc->count()); // mean_invvar is now the mean.
inv_var.AddVec2(-1.0, mean_invvar); // subtract mean^2; inv_var is now the var
inv_var.InvertElements(); // inv_var is now the inverse var.
mean_invvar.MulElements(inv_var); // mean_invvar is now mean * inverse var.
}
ComputeGconsts();
DeletePointers(&clusterable_vec);
DeletePointers(&clusters);
}
}
void DiagGmm::Merge(int32 target_components, std::vector<int32> *history) {
if (target_components <= 0 || NumGauss() < target_components) {
KALDI_ERR << "Invalid argument for target number of Gaussians (="
<< target_components << "), #Gauss = " << NumGauss();
}
if (NumGauss() == target_components) {
KALDI_VLOG(2) << "No components merged, as target (" << target_components
<< ") = total.";
return; // Nothing to do.
}
int32 num_comp = NumGauss(), dim = Dim();
if (target_components == 1) { // global mean and variance
Vector<BaseFloat> weights(weights_);
// Undo variance inversion and multiplication of mean by inv var.
Matrix<BaseFloat> vars(inv_vars_);
Matrix<BaseFloat> means(means_invvars_);
vars.InvertElements();
means.MulElements(vars);
// add means square to variances; get second-order stats
for (int32 i = 0; i < num_comp; i++) {
vars.Row(i).AddVec2(1.0, means.Row(i));
}
// Slightly more efficient than calling this->Resize(1, dim)
gconsts_.Resize(1);
weights_.Resize(1);
means_invvars_.Resize(1, dim);
inv_vars_.Resize(1, dim);
for (int32 i = 0; i < num_comp; i++) {
weights_(0) += weights(i);
means_invvars_.Row(0).AddVec(weights(i), means.Row(i));
inv_vars_.Row(0).AddVec(weights(i), vars.Row(i));
}
if (!ApproxEqual(weights_(0), 1.0, 1e-6)) {
KALDI_WARN << "Weights sum to " << weights_(0) << ": rescaling.";
means_invvars_.Scale(weights_(0));
inv_vars_.Scale(weights_(0));
weights_(0) = 1.0;
}
inv_vars_.Row(0).AddVec2(-1.0, means_invvars_.Row(0));
inv_vars_.InvertElements();
means_invvars_.MulElements(inv_vars_);
ComputeGconsts();
return;
}
// If more than 1 merged component is required, use the hierarchical
// clustering of components that lead to the smallest decrease in likelihood.
std::vector<bool> discarded_component(num_comp);
Vector<BaseFloat> logdet(num_comp); // logdet for each component
for (int32 i = 0; i < num_comp; i++) {
discarded_component[i] = false;
for (int32 d = 0; d < dim; d++) {
logdet(i) += 0.5 * Log(inv_vars_(i, d)); // +0.5 because var is inverted
}
}
// Undo variance inversion and multiplication of mean by this
// Makes copy of means and vars for all components - memory inefficient?
Matrix<BaseFloat> vars(inv_vars_);
Matrix<BaseFloat> means(means_invvars_);
vars.InvertElements();
means.MulElements(vars);
// add means square to variances; get second-order stats
// (normalized by zero-order stats)
for (int32 i = 0; i < num_comp; i++) {
vars.Row(i).AddVec2(1.0, means.Row(i));
}
// compute change of likelihood for all combinations of components
SpMatrix<BaseFloat> delta_like(num_comp);
for (int32 i = 0; i < num_comp; i++) {
for (int32 j = 0; j < i; j++) {
BaseFloat w1 = weights_(i), w2 = weights_(j), w_sum = w1 + w2;
BaseFloat merged_logdet = merged_components_logdet(w1, w2,
means.Row(i), means.Row(j), vars.Row(i), vars.Row(j));
delta_like(i, j) = w_sum * merged_logdet
- w1 * logdet(i) - w2 * logdet(j);
}
}
// Merge components with smallest impact on the loglike
for (int32 removed = 0; removed < num_comp - target_components; removed++) {
// Search for the least significant change in likelihood
// (maximum of negative delta_likes)
BaseFloat max_delta_like = -std::numeric_limits<BaseFloat>::max();
int32 max_i = -1, max_j = -1;
for (int32 i = 0; i < NumGauss(); i++) {
if (discarded_component[i]) continue;
for (int32 j = 0; j < i; j++) {
if (discarded_component[j]) continue;
if (delta_like(i, j) > max_delta_like) {
max_delta_like = delta_like(i, j);
max_i = i;
max_j = j;
}
}
}
// make sure that different components will be merged
KALDI_ASSERT(max_i != max_j && max_i != -1 && max_j != -1);
// remember the merge candidates
if (history != NULL) {
history->push_back(max_i);
history->push_back(max_j);
}
// Merge components
BaseFloat w1 = weights_(max_i), w2 = weights_(max_j);
BaseFloat w_sum = w1 + w2;
// merge means
means.Row(max_i).AddVec(w2/w1, means.Row(max_j));
means.Row(max_i).Scale(w1/w_sum);
// merge vars
vars.Row(max_i).AddVec(w2/w1, vars.Row(max_j));
vars.Row(max_i).Scale(w1/w_sum);
// merge weights
weights_(max_i) = w_sum;
// Update gmm for merged component
// copy second-order stats (normalized by zero-order stats)
inv_vars_.Row(max_i).CopyFromVec(vars.Row(max_i));
// centralize
inv_vars_.Row(max_i).AddVec2(-1.0, means.Row(max_i));
// invert
inv_vars_.Row(max_i).InvertElements();
// copy first-order stats (normalized by zero-order stats)
means_invvars_.Row(max_i).CopyFromVec(means.Row(max_i));
// multiply by inv_vars
means_invvars_.Row(max_i).MulElements(inv_vars_.Row(max_i));
// Update logdet for merged component
logdet(max_i) = 0.0;
for (int32 d = 0; d < dim; d++) {
logdet(max_i) += 0.5 * Log(inv_vars_(max_i, d));
// +0.5 because var is inverted
}
// Label the removed component as discarded
discarded_component[max_j] = true;
// Update delta_like for merged component
for (int32 j = 0; j < num_comp; j++) {
if ((j == max_i) || (discarded_component[j])) continue;
BaseFloat w1 = weights_(max_i),
w2 = weights_(j),
w_sum = w1 + w2;
BaseFloat merged_logdet = merged_components_logdet(w1, w2,
means.Row(max_i), means.Row(j), vars.Row(max_i), vars.Row(j));
delta_like(max_i, j) = w_sum * merged_logdet - w1 * logdet(max_i)
- w2 * logdet(j);
// doesn't respect lower triangular indeces,
// relies on implicitly performed swap of coordinates if necessary
}
}
// Remove the consumed components
int32 m = 0;
for (int32 i = 0; i < num_comp; i++) {
if (discarded_component[i]) {
weights_.RemoveElement(m);
means_invvars_.RemoveRow(m);
inv_vars_.RemoveRow(m);
} else {
++m;
}
}
ComputeGconsts();
}
BaseFloat DiagGmm::merged_components_logdet(BaseFloat w1, BaseFloat w2,
const VectorBase<BaseFloat> &f1,
const VectorBase<BaseFloat> &f2,
const VectorBase<BaseFloat> &s1,
const VectorBase<BaseFloat> &s2)
const {
int32 dim = f1.Dim();
Vector<BaseFloat> tmp_mean(dim);
Vector<BaseFloat> tmp_var(dim);
BaseFloat w_sum = w1 + w2;
tmp_mean.CopyFromVec(f1);
tmp_mean.AddVec(w2/w1, f2);
tmp_mean.Scale(w1/w_sum);
tmp_var.CopyFromVec(s1);
tmp_var.AddVec(w2/w1, s2);
tmp_var.Scale(w1/w_sum);
tmp_var.AddVec2(-1.0, tmp_mean);
BaseFloat merged_logdet = 0.0;
for (int32 d = 0; d < dim; d++) {
merged_logdet -= 0.5 * Log(tmp_var(d));
// -0.5 because var is not inverted
}
return merged_logdet;
}
BaseFloat DiagGmm::ComponentLogLikelihood(const VectorBase<BaseFloat> &data,
int32 comp_id) const {
if (!valid_gconsts_)
KALDI_ERR << "Must call ComputeGconsts() before computing likelihood";
if (static_cast<int32>(data.Dim()) != Dim()) {
KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension "
<< "mismatch " << (data.Dim()) << " vs. "<< (Dim());
}
BaseFloat loglike;
Vector<BaseFloat> data_sq(data);
data_sq.ApplyPow(2.0);
// loglike = means * inv(vars) * data.
loglike = VecVec(means_invvars_.Row(comp_id), data);
// loglike += -0.5 * inv(vars) * data_sq.
loglike -= 0.5 * VecVec(inv_vars_.Row(comp_id), data_sq);
return loglike + gconsts_(comp_id);
}
// Gets likelihood of data given this.
BaseFloat DiagGmm::LogLikelihood(const VectorBase<BaseFloat> &data) const {
if (!valid_gconsts_)
KALDI_ERR << "Must call ComputeGconsts() before computing likelihood";
Vector<BaseFloat> loglikes;
LogLikelihoods(data, &loglikes);
BaseFloat log_sum = loglikes.LogSumExp();
if (KALDI_ISNAN(log_sum) || KALDI_ISINF(log_sum))
KALDI_ERR << "Invalid answer (overflow or invalid variances/features?)";
return log_sum;
}
void DiagGmm::LogLikelihoods(const VectorBase<BaseFloat> &data,
Vector<BaseFloat> *loglikes) const {
loglikes->Resize(gconsts_.Dim(), kUndefined);
loglikes->CopyFromVec(gconsts_);
if (data.Dim() != Dim()) {
KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension "
<< "mismatch " << data.Dim() << " vs. "<< Dim();
}
Vector<BaseFloat> data_sq(data);
data_sq.ApplyPow(2.0);
// loglikes += means * inv(vars) * data.
loglikes->AddMatVec(1.0, means_invvars_, kNoTrans, data, 1.0);
// loglikes += -0.5 * inv(vars) * data_sq.
loglikes->AddMatVec(-0.5, inv_vars_, kNoTrans, data_sq, 1.0);
}
void DiagGmm::LogLikelihoods(const MatrixBase<BaseFloat> &data,
Matrix<BaseFloat> *loglikes) const {
KALDI_ASSERT(data.NumRows() != 0);
loglikes->Resize(data.NumRows(), gconsts_.Dim(), kUndefined);
loglikes->CopyRowsFromVec(gconsts_);
if (data.NumCols() != Dim()) {
KALDI_ERR << "DiagGmm::ComponentLogLikelihood, dimension "
<< "mismatch " << data.NumCols() << " vs. "<< Dim();
}
Matrix<BaseFloat> data_sq(data);
data_sq.ApplyPow(2.0);
// loglikes += means * inv(vars) * data.
loglikes->AddMatMat(1.0, data, kNoTrans, means_invvars_, kTrans, 1.0);
// loglikes += -0.5 * inv(vars) * data_sq.
loglikes->AddMatMat(-0.5, data_sq, kNoTrans, inv_vars_, kTrans, 1.0);
}
void DiagGmm::LogLikelihoodsPreselect(const VectorBase<BaseFloat> &data,
const std::vector<int32> &indices,
Vector<BaseFloat> *loglikes) const {
KALDI_ASSERT(data.Dim() == Dim());
Vector<BaseFloat> data_sq(data);
data_sq.ApplyPow(2.0);
int32 num_indices = static_cast<int32>(indices.size());
loglikes->Resize(num_indices, kUndefined);
if (indices.back() + 1 - indices.front() == num_indices) {
// A special (but common) case when the indices form a contiguous range.
int32 start_idx = indices.front();
loglikes->CopyFromVec(SubVector<BaseFloat>(gconsts_, start_idx, num_indices));
// loglikes += means * inv(vars) * data.
SubMatrix<BaseFloat> means_invvars_sub(means_invvars_, start_idx, num_indices,
0, Dim());
loglikes->AddMatVec(1.0, means_invvars_sub, kNoTrans, data, 1.0);
SubMatrix<BaseFloat> inv_vars_sub(inv_vars_, start_idx, num_indices,
0, Dim());
// loglikes += -0.5 * inv(vars) * data_sq.
loglikes->AddMatVec(-0.5, inv_vars_sub, kNoTrans, data_sq, 1.0);
} else {
for (int32 i = 0; i < num_indices; i++) {
int32 idx = indices[i]; // The Gaussian index.
BaseFloat this_loglike =
gconsts_(idx) + VecVec(means_invvars_.Row(idx), data)
- 0.5*VecVec(inv_vars_.Row(idx), data_sq);
(*loglikes)(i) = this_loglike;
}
}
}
// Gets likelihood of data given this. Also provides per-Gaussian posteriors.
BaseFloat DiagGmm::ComponentPosteriors(const VectorBase<BaseFloat> &data,
Vector<BaseFloat> *posterior) const {
if (!valid_gconsts_)
KALDI_ERR << "Must call ComputeGconsts() before computing likelihood";
if (posterior == NULL) KALDI_ERR << "NULL pointer passed as return argument.";
Vector<BaseFloat> loglikes;
LogLikelihoods(data, &loglikes);
BaseFloat log_sum = loglikes.ApplySoftMax();
if (KALDI_ISNAN(log_sum) || KALDI_ISINF(log_sum))
KALDI_ERR << "Invalid answer (overflow or invalid variances/features?)";
if (posterior->Dim() != loglikes.Dim())
posterior->Resize(loglikes.Dim());
posterior->CopyFromVec(loglikes);
return log_sum;
}
void DiagGmm::RemoveComponent(int32 gauss, bool renorm_weights) {
KALDI_ASSERT(gauss < NumGauss());
if (NumGauss() == 1)
KALDI_ERR << "Attempting to remove the only remaining component.";
weights_.RemoveElement(gauss);
gconsts_.RemoveElement(gauss);
means_invvars_.RemoveRow(gauss);
inv_vars_.RemoveRow(gauss);
BaseFloat sum_weights = weights_.Sum();
if (renorm_weights) {
weights_.Scale(1.0/sum_weights);
valid_gconsts_ = false;
}
}
void DiagGmm::RemoveComponents(const std::vector<int32> &gauss_in,
bool renorm_weights) {
std::vector<int32> gauss(gauss_in);
std::sort(gauss.begin(), gauss.end());
KALDI_ASSERT(IsSortedAndUniq(gauss));
// If efficiency is later an issue, will code this specially (unlikely).
for (size_t i = 0; i < gauss.size(); i++) {
RemoveComponent(gauss[i], renorm_weights);
for (size_t j = i + 1; j < gauss.size(); j++)
gauss[j]--;
}
}
void DiagGmm::Interpolate(BaseFloat rho, const DiagGmm &source,
GmmFlagsType flags) {
KALDI_ASSERT(NumGauss() == source.NumGauss());
KALDI_ASSERT(Dim() == source.Dim());
DiagGmmNormal us(*this);
DiagGmmNormal them(source);
if (flags & kGmmWeights) {
us.weights_.Scale(1.0 - rho);
us.weights_.AddVec(rho, them.weights_);
us.weights_.Scale(1.0 / us.weights_.Sum());
}
if (flags & kGmmMeans) {
us.means_.Scale(1.0 - rho);
us.means_.AddMat(rho, them.means_);
}
if (flags & kGmmVariances) {
us.vars_.Scale(1.0 - rho);
us.vars_.AddMat(rho, them.vars_);
}
us.CopyToDiagGmm(this);
ComputeGconsts();
}
void DiagGmm::Interpolate(BaseFloat rho, const FullGmm &source,
GmmFlagsType flags) {
KALDI_ASSERT(NumGauss() == source.NumGauss());
KALDI_ASSERT(Dim() == source.Dim());
DiagGmmNormal us(*this);
FullGmmNormal them(source);
if (flags & kGmmWeights) {
us.weights_.Scale(1.0 - rho);
us.weights_.AddVec(rho, them.weights_);
us.weights_.Scale(1.0 / us.weights_.Sum());
}
if (flags & kGmmMeans) {
us.means_.Scale(1.0 - rho);
us.means_.AddMat(rho, them.means_);
}
if (flags & kGmmVariances) {
for (int32 i = 0; i < NumGauss(); i++) {
us.vars_.Scale(1. - rho);
Vector<double> diag(Dim());
for (int32 j = 0; j < Dim(); j++)
diag(j) = them.vars_[i](j, j);
us.vars_.Row(i).AddVec(rho, diag);
}
}
us.CopyToDiagGmm(this);
ComputeGconsts();
}
void DiagGmm::Write(std::ostream &out_stream, bool binary) const {
if (!valid_gconsts_)
KALDI_ERR << "Must call ComputeGconsts() before writing the model.";
WriteToken(out_stream, binary, "<DiagGMM>");
if (!binary) out_stream << "\n";
WriteToken(out_stream, binary, "<GCONSTS>");
gconsts_.Write(out_stream, binary);
WriteToken(out_stream, binary, "<WEIGHTS>");
weights_.Write(out_stream, binary);
WriteToken(out_stream, binary, "<MEANS_INVVARS>");
means_invvars_.Write(out_stream, binary);
WriteToken(out_stream, binary, "<INV_VARS>");
inv_vars_.Write(out_stream, binary);
WriteToken(out_stream, binary, "</DiagGMM>");
if (!binary) out_stream << "\n";
}
std::ostream & operator <<(std::ostream & os,
const kaldi::DiagGmm &gmm) {
gmm.Write(os, false);
return os;
}
void DiagGmm::Read(std::istream &is, bool binary) {
// ExpectToken(is, binary, "<DiagGMMBegin>");
std::string token;
ReadToken(is, binary, &token);
// <DiagGMMBegin> is for compatibility. Will be deleted later
if (token != "<DiagGMMBegin>" && token != "<DiagGMM>")
KALDI_ERR << "Expected <DiagGMM>, got " << token;
ReadToken(is, binary, &token);
if (token == "<GCONSTS>") { // The gconsts are optional.
gconsts_.Read(is, binary);
ExpectToken(is, binary, "<WEIGHTS>");
} else {
if (token != "<WEIGHTS>")
KALDI_ERR << "DiagGmm::Read, expected <WEIGHTS> or <GCONSTS>, got "
<< token;
}
weights_.Read(is, binary);
ExpectToken(is, binary, "<MEANS_INVVARS>");
means_invvars_.Read(is, binary);
ExpectToken(is, binary, "<INV_VARS>");
inv_vars_.Read(is, binary);
// ExpectToken(is, binary, "<DiagGMMEnd>");
ReadToken(is, binary, &token);
// <DiagGMMEnd> is for compatibility. Will be deleted later
if (token != "<DiagGMMEnd>" && token != "</DiagGMM>")
KALDI_ERR << "Expected </DiagGMM>, got " << token;
ComputeGconsts(); // safer option than trusting the read gconsts
}
std::istream & operator >>(std::istream &is, kaldi::DiagGmm &gmm) {
gmm.Read(is, false); // false == non-binary.
return is;
}
/// Get gaussian selection information for one frame.
BaseFloat DiagGmm::GaussianSelection(const VectorBase<BaseFloat> &data,
int32 num_gselect,
std::vector<int32> *output) const {
int32 num_gauss = NumGauss();
Vector<BaseFloat> loglikes(num_gauss, kUndefined);
output->clear();
this->LogLikelihoods(data, &loglikes);
BaseFloat thresh;
if (num_gselect < num_gauss) {
Vector<BaseFloat> loglikes_copy(loglikes);
BaseFloat *ptr = loglikes_copy.Data();
std::nth_element(ptr, ptr+num_gauss-num_gselect, ptr+num_gauss);
thresh = ptr[num_gauss-num_gselect];
} else {
thresh = -std::numeric_limits<BaseFloat>::infinity();
}
BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity();
std::vector<std::pair<BaseFloat, int32> > pairs;
for (int32 p = 0; p < num_gauss; p++) {
if (loglikes(p) >= thresh) {
pairs.push_back(std::make_pair(loglikes(p), p));
}
}
std::sort(pairs.begin(), pairs.end(),
std::greater<std::pair<BaseFloat, int32> >());
for (int32 j = 0;
j < num_gselect && j < static_cast<int32>(pairs.size());
j++) {
output->push_back(pairs[j].second);
tot_loglike = LogAdd(tot_loglike, pairs[j].first);
}
KALDI_ASSERT(!output->empty());
return tot_loglike;
}
BaseFloat DiagGmm::GaussianSelection(const MatrixBase<BaseFloat> &data,
int32 num_gselect,
std::vector<std::vector<int32> > *output) const {
double ans = 0.0;
int32 num_frames = data.NumRows(), num_gauss = NumGauss();
int32 max_mem = 10000000; // Don't devote more than 10Mb to loglikes_mat;
// break up the utterance if needed.
int32 mem_needed = num_frames * num_gauss * sizeof(BaseFloat);
if (mem_needed > max_mem) {
// Break into parts and recurse, we don't want to consume too
// much memory.
int32 num_parts = (mem_needed + max_mem - 1) / max_mem;
int32 part_frames = (data.NumRows() + num_parts - 1) / num_parts;
double tot_ans = 0.0;
std::vector<std::vector<int32> > part_output;
output->clear();
output->resize(num_frames);
for (int32 p = 0; p < num_parts; p++) {
int32 start_frame = p * part_frames,
this_num_frames = std::min(num_frames - start_frame, part_frames);
SubMatrix<BaseFloat> data_part(data, start_frame, this_num_frames,
0, data.NumCols());
tot_ans += GaussianSelection(data_part, num_gselect, &part_output);
for (int32 t = 0; t < this_num_frames; t++)
(*output)[start_frame + t].swap(part_output[t]);
}
KALDI_ASSERT(!output->back().empty());
return tot_ans;
}
KALDI_ASSERT(num_frames != 0);
Matrix<BaseFloat> loglikes_mat(num_frames, num_gauss, kUndefined);
this->LogLikelihoods(data, &loglikes_mat);
output->clear();
output->resize(num_frames);
for (int32 i = 0; i < num_frames; i++) {
SubVector<BaseFloat> loglikes(loglikes_mat, i);
BaseFloat thresh;
if (num_gselect < num_gauss) {
Vector<BaseFloat> loglikes_copy(loglikes);
BaseFloat *ptr = loglikes_copy.Data();
std::nth_element(ptr, ptr+num_gauss-num_gselect, ptr+num_gauss);
thresh = ptr[num_gauss-num_gselect];
} else {
thresh = -std::numeric_limits<BaseFloat>::infinity();
}
BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity();
std::vector<std::pair<BaseFloat, int32> > pairs;
for (int32 p = 0; p < num_gauss; p++) {
if (loglikes(p) >= thresh) {
pairs.push_back(std::make_pair(loglikes(p), p));
}
}
std::sort(pairs.begin(), pairs.end(),
std::greater<std::pair<BaseFloat, int32> >());
std::vector<int32> &this_output = (*output)[i];
for (int32 j = 0;
j < num_gselect && j < static_cast<int32>(pairs.size());
j++) {
this_output.push_back(pairs[j].second);
tot_loglike = LogAdd(tot_loglike, pairs[j].first);
}
KALDI_ASSERT(!this_output.empty());
ans += tot_loglike;
}
return ans;
}
BaseFloat DiagGmm::GaussianSelectionPreselect(
const VectorBase<BaseFloat> &data,
const std::vector<int32> &preselect,
int32 num_gselect,
std::vector<int32> *output) const {
static bool warned_size = false;
int32 preselect_sz = preselect.size();
int32 this_num_gselect = std::min(num_gselect, preselect_sz);
if (preselect_sz <= num_gselect && !warned_size) {
warned_size = true;
KALDI_WARN << "Preselect size is less or equal to than final size, "
<< "doing nothing: " << preselect_sz << " < " << num_gselect
<< " [won't warn again]";
}
Vector<BaseFloat> loglikes(preselect_sz);
LogLikelihoodsPreselect(data, preselect, &loglikes);
Vector<BaseFloat> loglikes_copy(loglikes);
BaseFloat *ptr = loglikes_copy.Data();
std::nth_element(ptr, ptr+preselect_sz-this_num_gselect,
ptr+preselect_sz);
BaseFloat thresh = ptr[preselect_sz-this_num_gselect];
BaseFloat tot_loglike = -std::numeric_limits<BaseFloat>::infinity();
// we want the output sorted from best likelihood to worse
// (so we can prune further without the model)...
std::vector<std::pair<BaseFloat, int32> > pairs;
for (int32 p = 0; p < preselect_sz; p++)
if (loglikes(p) >= thresh)
pairs.push_back(std::make_pair(loglikes(p), preselect[p]));
std::sort(pairs.begin(), pairs.end(),
std::greater<std::pair<BaseFloat, int32> >());
output->clear();
for (int32 j = 0;
j < this_num_gselect && j < static_cast<int32>(pairs.size());
j++) {
output->push_back(pairs[j].second);
tot_loglike = LogAdd(tot_loglike, pairs[j].first);
}
KALDI_ASSERT(!output->empty());
return tot_loglike;
}
void DiagGmm::CopyFromNormal(const DiagGmmNormal &diag_gmm_normal) {
diag_gmm_normal.CopyToDiagGmm(this);
}
void DiagGmm::Generate(VectorBase<BaseFloat> *output) {
KALDI_ASSERT(static_cast<int32>(output->Dim()) == Dim());
BaseFloat tot = weights_.Sum();
KALDI_ASSERT(tot > 0.0);
double r = tot * RandUniform() * 0.99999;
int32 i = 0;
double sum = 0.0;
while (sum + weights_(i) < r) {
sum += weights_(i);
i++;
KALDI_ASSERT(i < static_cast<int32>(weights_.Dim()));
}
// now i is the index of the Gaussian we chose.
SubVector<BaseFloat> inv_var(inv_vars_, i),
mean_invvar(means_invvars_, i);
for (int32 d = 0; d < inv_var.Dim(); d++) {
BaseFloat stddev = 1.0 / sqrt(inv_var(d)),
mean = mean_invvar(d) / inv_var(d);
(*output)(d) = mean + RandGauss() * stddev;
}
}
DiagGmm::DiagGmm(const GaussClusterable &gc,
BaseFloat var_floor): valid_gconsts_(false) {
Vector<BaseFloat> x (gc.x_stats());
Vector<BaseFloat> x2 (gc.x2_stats());
BaseFloat count = gc.count();
KALDI_ASSERT(count > 0.0);
this->Resize(1, x.Dim());
x.Scale(1.0/count);
x2.Scale(1.0/count);
x2.AddVec2(-1.0, x); // subtract mean^2.
x2.ApplyFloor(var_floor);
x2.InvertElements(); // get inv-var.
KALDI_ASSERT(x2.Min() > 0);
Matrix<BaseFloat> mean(1, x.Dim());
mean.Row(0).CopyFromVec(x);
Matrix<BaseFloat> inv_var(1, x.Dim());
inv_var.Row(0).CopyFromVec(x2);
this->SetInvVarsAndMeans(inv_var, mean);
Vector<BaseFloat> weights(1);
weights(0) = 1.0;
this->SetWeights(weights);
this->ComputeGconsts();
}
} // End namespace kaldi