Blame view

src/gmm/full-gmm-normal.cc 4.14 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  // gmm/full-gmm-normal.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Saarland University;
  //                      Yanmin Qian
  //                      Univ. Erlangen-Nuremberg, Korbinian Riedhammer
  //                2013  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <algorithm>
  #include <limits>
  #include <string>
  #include <vector>
  
  #include "gmm/full-gmm-normal.h"
  #include "gmm/full-gmm.h"
  
  namespace kaldi {
  
  void FullGmmNormal::Resize(int32 nmix, int32 dim) {
    KALDI_ASSERT(nmix > 0 && dim > 0);
  
    if (weights_.Dim() != nmix)
      weights_.Resize(nmix);
  
    if (means_.NumRows() != nmix ||
        means_.NumCols() != dim)
      means_.Resize(nmix, dim);
  
    if (vars_.size() != nmix)
      vars_.resize(nmix);
    for (int32 i = 0; i < nmix; i++) {
      if (vars_[i].NumRows() != nmix ||
          vars_[i].NumCols() != dim) {
        vars_[i].Resize(dim);
      }
    }
  }
  
  void FullGmmNormal::CopyFromFullGmm(const FullGmm &fullgmm) {
    /// resize the variables to fit the gmm
    size_t dim = fullgmm.Dim();
    size_t num_gauss = fullgmm.NumGauss();
    Resize(num_gauss, dim);
  
    /// copy weights
    weights_.CopyFromVec(fullgmm.weights_);
  
    /// we need to split the natural components for each gaussian
    Vector<double> mean_times_invcovar(dim);
  
    for (size_t i = 0; i < num_gauss; i++) {
      // copy and invert (inverse) covariance matrix
      vars_[i].CopyFromSp(fullgmm.inv_covars_[i]);
      vars_[i].InvertDouble();
  
      // multiply the (mean x icov) by (cov) to get the means back
      mean_times_invcovar.CopyFromVec(fullgmm.means_invcovars_.Row(i));
      (means_.Row(i)).AddSpVec(1.0, vars_[i], mean_times_invcovar, 0.0);
    }
  }
  
  void FullGmmNormal::CopyToFullGmm(FullGmm *fullgmm, GmmFlagsType flags) {
    KALDI_ASSERT(weights_.Dim() == fullgmm->weights_.Dim()
                 && means_.NumCols() == fullgmm->Dim());
  
    FullGmmNormal oldg(*fullgmm);
  
    if (flags & kGmmWeights)
      fullgmm->weights_.CopyFromVec(weights_);
  
    size_t num_comp = fullgmm->NumGauss(), dim = fullgmm->Dim();
    for (size_t i = 0; i < num_comp; i++) {
      if (flags & kGmmVariances) {
        fullgmm->inv_covars_[i].CopyFromSp(vars_[i]);
        fullgmm->inv_covars_[i].InvertDouble();
  
        // update the mean-related natural part with old mean, if necessary
        if (!(flags & kGmmMeans)) {
          Vector<BaseFloat> mean_times_inv(dim);
          Vector<BaseFloat> mhelp(oldg.means_.Row(i));
          mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mhelp, 0.0f);
          fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv);
        }
      }
  
      if (flags & kGmmMeans) {
        Vector<BaseFloat> mean_times_inv(dim), mean(means_.Row(i));
        mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mean, 0.0f);
        fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv);
      }
    }
  
    fullgmm->valid_gconsts_ = false;
  }
  
  void FullGmmNormal::Rand(MatrixBase<BaseFloat> *feats) {
    int32 dim = means_.NumCols(), num_frames = feats->NumRows(),
        num_gauss = means_.NumRows();
    KALDI_ASSERT(feats->NumCols() == dim);
    std::vector<TpMatrix<BaseFloat> > sqrt_var(num_gauss);
    for (int32 i = 0; i < num_gauss; i++) {
      sqrt_var[i].Resize(dim);
      sqrt_var[i].Cholesky(SpMatrix<BaseFloat>(vars_[i]));
    }
    Vector<BaseFloat> rand(dim);
    for (int32 t = 0; t < num_frames; t++) {
      int32 i = weights_.RandCategorical(); // index with prob propto weights_[i].
      SubVector<BaseFloat> frame(*feats, t);
      frame.CopyFromVec(means_.Row(i));
      rand.SetRandn();
      frame.AddTpVec(1.0, sqrt_var[i], kNoTrans, rand, 1.0);
    }
  }
  
  }  // End namespace kaldi