Blame view
src/gmm/full-gmm-normal.cc
4.14 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
// gmm/full-gmm-normal.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University; // Yanmin Qian // Univ. Erlangen-Nuremberg, Korbinian Riedhammer // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include <limits> #include <string> #include <vector> #include "gmm/full-gmm-normal.h" #include "gmm/full-gmm.h" namespace kaldi { void FullGmmNormal::Resize(int32 nmix, int32 dim) { KALDI_ASSERT(nmix > 0 && dim > 0); if (weights_.Dim() != nmix) weights_.Resize(nmix); if (means_.NumRows() != nmix || means_.NumCols() != dim) means_.Resize(nmix, dim); if (vars_.size() != nmix) vars_.resize(nmix); for (int32 i = 0; i < nmix; i++) { if (vars_[i].NumRows() != nmix || vars_[i].NumCols() != dim) { vars_[i].Resize(dim); } } } void FullGmmNormal::CopyFromFullGmm(const FullGmm &fullgmm) { /// resize the variables to fit the gmm size_t dim = fullgmm.Dim(); size_t num_gauss = fullgmm.NumGauss(); Resize(num_gauss, dim); /// copy weights weights_.CopyFromVec(fullgmm.weights_); /// we need to split the natural components for each gaussian Vector<double> mean_times_invcovar(dim); for (size_t i = 0; i < num_gauss; i++) { // copy and invert (inverse) covariance matrix vars_[i].CopyFromSp(fullgmm.inv_covars_[i]); vars_[i].InvertDouble(); // multiply the (mean x icov) by (cov) to get the means back mean_times_invcovar.CopyFromVec(fullgmm.means_invcovars_.Row(i)); (means_.Row(i)).AddSpVec(1.0, vars_[i], mean_times_invcovar, 0.0); } } void FullGmmNormal::CopyToFullGmm(FullGmm *fullgmm, GmmFlagsType flags) { KALDI_ASSERT(weights_.Dim() == fullgmm->weights_.Dim() && means_.NumCols() == fullgmm->Dim()); FullGmmNormal oldg(*fullgmm); if (flags & kGmmWeights) fullgmm->weights_.CopyFromVec(weights_); size_t num_comp = fullgmm->NumGauss(), dim = fullgmm->Dim(); for (size_t i = 0; i < num_comp; i++) { if (flags & kGmmVariances) { fullgmm->inv_covars_[i].CopyFromSp(vars_[i]); fullgmm->inv_covars_[i].InvertDouble(); // update the mean-related natural part with old mean, if necessary if (!(flags & kGmmMeans)) { Vector<BaseFloat> mean_times_inv(dim); Vector<BaseFloat> mhelp(oldg.means_.Row(i)); mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mhelp, 0.0f); fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv); } } if (flags & kGmmMeans) { Vector<BaseFloat> mean_times_inv(dim), mean(means_.Row(i)); mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mean, 0.0f); fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv); } } fullgmm->valid_gconsts_ = false; } void FullGmmNormal::Rand(MatrixBase<BaseFloat> *feats) { int32 dim = means_.NumCols(), num_frames = feats->NumRows(), num_gauss = means_.NumRows(); KALDI_ASSERT(feats->NumCols() == dim); std::vector<TpMatrix<BaseFloat> > sqrt_var(num_gauss); for (int32 i = 0; i < num_gauss; i++) { sqrt_var[i].Resize(dim); sqrt_var[i].Cholesky(SpMatrix<BaseFloat>(vars_[i])); } Vector<BaseFloat> rand(dim); for (int32 t = 0; t < num_frames; t++) { int32 i = weights_.RandCategorical(); // index with prob propto weights_[i]. SubVector<BaseFloat> frame(*feats, t); frame.CopyFromVec(means_.Row(i)); rand.SetRandn(); frame.AddTpVec(1.0, sqrt_var[i], kNoTrans, rand, 1.0); } } } // End namespace kaldi |