Blame view
src/gmmbin/gmm-basis-fmllr-accs.cc
6.33 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
// gmmbin/gmm-basis-fmllr-accs.cc // Copyright 2012 Carnegie Mellon University (author: Yajie Miao) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" #include "transform/basis-fmllr-diag-gmm.h" #include "hmm/posterior.h" namespace kaldi { void AccumulateForUtterance(const Matrix<BaseFloat> &feats, const Posterior &post, const TransitionModel &trans_model, const AmDiagGmm &am_gmm, FmllrDiagGmmAccs *spk_stats) { Posterior pdf_post; ConvertPosteriorToPdfs(trans_model, post, &pdf_post); for (size_t i = 0; i < post.size(); i++) { for (size_t j = 0; j < pdf_post[i].size(); j++) { int32 pdf_id = pdf_post[i][j].first; spk_stats->AccumulateForGmm(am_gmm.GetPdf(pdf_id), feats.Row(i), pdf_post[i][j].second); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Accumulate gradient scatter from training set, either per utterance or " "for the supplied set of speakers (spk2utt option). Reads posterior to accumulate " "fMLLR stats for each speaker/utterance. Writes gradient scatter matrix. " "Usage: gmm-basis-fmllr-accs [options] <model-in> <feature-rspecifier>" "<post-rspecifier> <accs-wspecifier> "; bool binary_write = true; string spk2utt_rspecifier; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), post_rspecifier = po.GetArg(3), accs_wspecifier = po.GetArg(4); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } RandomAccessPosteriorReader post_reader(post_rspecifier); BasisFmllrAccus basis_accs(am_gmm.Dim()); int32 num_done = 0, num_no_post = 0, num_other_error = 0; if (spk2utt_rspecifier != "") { // per-speaker mode SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); int32 num_spk = 0; for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrDiagGmmAccs spk_stats(am_gmm.Dim()); string spk = spk2utt_reader.Key(); const vector<string> &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; num_other_error++; continue; } if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posteriors for utterance " << utt; num_no_post++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(utt); const Posterior &post = post_reader.Value(utt); if (static_cast<int32>(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior vector has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } AccumulateForUtterance(feats, post, trans_model, am_gmm, &spk_stats); num_done++; } // end looping over all utterances of this speaker basis_accs.AccuGradientScatter(spk_stats); num_spk++; } // end looping over speakers KALDI_LOG << "Accumulate statistics from " << num_spk << " speakers"; } else { // per-utterance mode SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posts for utterance " << utt; num_no_post++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(); const Posterior &post = post_reader.Value(utt); if (static_cast<int32>(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } // Accumulate stats for this utterance FmllrDiagGmmAccs utt_stats(am_gmm.Dim()); AccumulateForUtterance(feats, post, trans_model, am_gmm, &utt_stats); num_done++; basis_accs.AccuGradientScatter(utt_stats); } // end looping over utterances } // Write out accumulations { Output ko(accs_wspecifier, binary_write); basis_accs.Write(ko.Stream(), binary_write); } KALDI_LOG << "Done " << num_done << " files, " << num_no_post << " with no posts, " << num_other_error << " with other errors."; KALDI_LOG << "Written gradient scatter to " << accs_wspecifier; return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what(); return -1; } } |