Blame view

src/gmmbin/gmm-compute-likes.cc 2.74 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  // gmmbin/gmm-compute-likes.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "fstext/fstext-lib.h"
  #include "base/timer.h"
  
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      typedef kaldi::int32 int32;
      using fst::SymbolTable;
      using fst::VectorFst;
      using fst::StdArc;
  
      const char *usage =
          "Compute log-likelihoods from GMM-based model
  "
          "(outputs matrices of log-likelihoods indexed by (frame, pdf)
  "
          "Usage: gmm-compute-likes [options] model-in features-rspecifier likes-wspecifier
  ";
      ParseOptions po(usage);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_in_filename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          loglikes_wspecifier = po.GetArg(3);
  
      AmDiagGmm am_gmm;
      {
        bool binary;
        TransitionModel trans_model;  // not needed.
        Input ki(model_in_filename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_gmm.Read(ki.Stream(), binary);
      }
  
      BaseFloatMatrixWriter loglikes_writer(loglikes_wspecifier);
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
  
      int32 num_done = 0;
      for (; !feature_reader.Done(); feature_reader.Next()) {
        std::string key = feature_reader.Key();
        const Matrix<BaseFloat> &features (feature_reader.Value());
        Matrix<BaseFloat> loglikes(features.NumRows(), am_gmm.NumPdfs());
        for (int32 i = 0; i < features.NumRows(); i++) {
          for (int32 j = 0; j < am_gmm.NumPdfs(); j++) {
            SubVector<BaseFloat> feat_row(features, i);
            loglikes(i, j) = am_gmm.LogLikelihood(j, feat_row);
          }
        }
        loglikes_writer.Write(key, loglikes);
        num_done++;
      }
  
      KALDI_LOG << "gmm-compute-likes: computed likelihoods for " << num_done
                << " utterances.";
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }