Blame view
src/gmmbin/gmm-est-basis-fmllr-gpost.cc
8.37 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
// gmmbin/gmm-est-basis-fmllr-gpost.cc // Copyright 2012 Carnegie Mellon University (author: Yajie Miao) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" #include "transform/basis-fmllr-diag-gmm.h" #include "hmm/posterior.h" namespace kaldi { void AccumulateForUtterance(const Matrix<BaseFloat> &feats, const GaussPost &gpost, const TransitionModel &trans_model, const AmDiagGmm &am_gmm, FmllrDiagGmmAccs *spk_stats) { for (size_t i = 0; i < gpost.size(); i++) { for (size_t j = 0; j < gpost[i].size(); j++) { int32 pdf_id = gpost[i][j].first; const Vector<BaseFloat> & posterior(gpost[i][j].second); spk_stats->AccumulateFromPosteriors(am_gmm.GetPdf(pdf_id), feats.Row(i), posterior); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Perform basis fMLLR adaptation in testing stage, either per utterance or " "for the supplied set of speakers (spk2utt option). Reads Gaussian-level " "posterior to accumulate fMLLR stats for each speaker/utterance. Writes " "to a table of matrices. " "Usage: gmm-est-basis-fmllr-gpost [options] <model-in> <basis-rspecifier> " "<feature-rspecifier> <post-rspecifier> <transform-wspecifier> "; ParseOptions po(usage); BasisFmllrOptions basis_fmllr_opts; string spk2utt_rspecifier; string weights_out_filename; po.Register("spk2utt", &spk2utt_rspecifier, "Rspecifier for speaker to " "utterance-list map"); po.Register("write-weights", &weights_out_filename, "File to write base " "weights to."); basis_fmllr_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), basis_rspecifier = po.GetArg(2), feature_rspecifier = po.GetArg(3), gpost_rspecifier = po.GetArg(4), trans_wspecifier = po.GetArg(5); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } BasisFmllrEstimate basis_est; ReadKaldiObject(basis_rspecifier, &basis_est); RandomAccessGaussPostReader gpost_reader(gpost_rspecifier); double tot_impr = 0.0, tot_t = 0.0; BaseFloatMatrixWriter transform_writer(trans_wspecifier); BaseFloatVectorWriter weights_writer; if (!weights_out_filename.empty()) { weights_writer.Open(weights_out_filename); } int32 num_done = 0, num_no_post = 0, num_other_error = 0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrDiagGmmAccs spk_stats(am_gmm.Dim()); string spk = spk2utt_reader.Key(); const vector<string> &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; num_other_error++; continue; } if (!gpost_reader.HasKey(utt)) { KALDI_WARN << "Did not find posteriors for utterance " << utt; num_no_post++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(utt); const GaussPost &gpost = gpost_reader.Value(utt); if (static_cast<int32>(gpost.size()) != feats.NumRows()) { KALDI_WARN << "GaussPost has wrong size " << (gpost.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } AccumulateForUtterance(feats, gpost, trans_model, am_gmm, &spk_stats); num_done++; } // end looping over all utterances of the current speaker double impr, spk_tot_t; int32 wgt_size; { // Compute the transform and write it out. Matrix<BaseFloat> transform(am_gmm.Dim(), am_gmm.Dim() + 1); transform.SetUnit(); Vector<BaseFloat> weights; impr = basis_est.ComputeTransform(spk_stats, &transform, &weights, basis_fmllr_opts); spk_tot_t = spk_stats.beta_; wgt_size = weights.Dim(); transform_writer.Write(spk, transform); // Optionally write out the base weights if (!weights_out_filename.empty() && weights.Dim() > 0) weights_writer.Write(spk, weights); } KALDI_LOG << "For speaker " << spk << ", auxf-impr from Basis fMLLR is " << (impr / spk_tot_t) << ", over " << spk_tot_t << " frames, " << "the top " << wgt_size << " basis elements have been used"; tot_impr += impr; tot_t += spk_tot_t; } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); if (!gpost_reader.HasKey(utt)) { KALDI_WARN << "Did not find posts for utterance " << utt; num_no_post++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(); const GaussPost &gpost = gpost_reader.Value(utt); if (static_cast<int32>(gpost.size()) != feats.NumRows()) { KALDI_WARN << "GaussPost has wrong size " << (gpost.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } FmllrDiagGmmAccs spk_stats(am_gmm.Dim()); AccumulateForUtterance(feats, gpost, trans_model, am_gmm, &spk_stats); num_done++; BaseFloat impr, utt_tot_t; int32 wgt_size; { // Compute the transform and write it out. Matrix<BaseFloat> transform(am_gmm.Dim(), am_gmm.Dim()+1); transform.SetUnit(); Vector<BaseFloat> weights; impr = basis_est.ComputeTransform(spk_stats, &transform, &weights, basis_fmllr_opts); utt_tot_t = spk_stats.beta_; wgt_size = weights.Dim(); transform_writer.Write(utt, transform); // Optionally write out the base weights if (!weights_out_filename.empty() && weights.Dim() > 0) weights_writer.Write(utt, weights); } KALDI_LOG << "For utterance " << utt << ", auxf-impr from Basis fMLLR is " << (impr / utt_tot_t) << ", over " << utt_tot_t << " frames, " << "the top " << wgt_size << " basis elements have been used"; tot_impr += impr; tot_t += utt_tot_t; } // end looping over all the utterances } KALDI_LOG << "Done " << num_done << " files, " << num_no_post << " with no posts, " << num_other_error << " with other errors."; KALDI_LOG << "Overall fMLLR auxf-impr per frame is " << (tot_impr / tot_t) << " over " << tot_t << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what(); return -1; } } |