gmm-est-basis-fmllr-gpost.cc
8.37 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// gmmbin/gmm-est-basis-fmllr-gpost.cc
// Copyright 2012 Carnegie Mellon University (author: Yajie Miao)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <string>
using std::string;
#include <vector>
using std::vector;
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "transform/fmllr-diag-gmm.h"
#include "transform/basis-fmllr-diag-gmm.h"
#include "hmm/posterior.h"
namespace kaldi {
void AccumulateForUtterance(const Matrix<BaseFloat> &feats,
const GaussPost &gpost,
const TransitionModel &trans_model,
const AmDiagGmm &am_gmm,
FmllrDiagGmmAccs *spk_stats) {
for (size_t i = 0; i < gpost.size(); i++) {
for (size_t j = 0; j < gpost[i].size(); j++) {
int32 pdf_id = gpost[i][j].first;
const Vector<BaseFloat> & posterior(gpost[i][j].second);
spk_stats->AccumulateFromPosteriors(am_gmm.GetPdf(pdf_id),
feats.Row(i), posterior);
}
}
}
}
int main(int argc, char *argv[]) {
try {
typedef kaldi::int32 int32;
using namespace kaldi;
const char *usage =
"Perform basis fMLLR adaptation in testing stage, either per utterance or\n"
"for the supplied set of speakers (spk2utt option). Reads Gaussian-level\n"
"posterior to accumulate fMLLR stats for each speaker/utterance. Writes\n"
"to a table of matrices.\n"
"Usage: gmm-est-basis-fmllr-gpost [options] <model-in> <basis-rspecifier> "
"<feature-rspecifier> <post-rspecifier> <transform-wspecifier>\n";
ParseOptions po(usage);
BasisFmllrOptions basis_fmllr_opts;
string spk2utt_rspecifier;
string weights_out_filename;
po.Register("spk2utt", &spk2utt_rspecifier, "Rspecifier for speaker to "
"utterance-list map");
po.Register("write-weights", &weights_out_filename, "File to write base "
"weights to.");
basis_fmllr_opts.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 5) {
po.PrintUsage();
exit(1);
}
string
model_rxfilename = po.GetArg(1),
basis_rspecifier = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
gpost_rspecifier = po.GetArg(4),
trans_wspecifier = po.GetArg(5);
TransitionModel trans_model;
AmDiagGmm am_gmm;
{
bool binary;
Input ki(model_rxfilename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
BasisFmllrEstimate basis_est;
ReadKaldiObject(basis_rspecifier, &basis_est);
RandomAccessGaussPostReader gpost_reader(gpost_rspecifier);
double tot_impr = 0.0, tot_t = 0.0;
BaseFloatMatrixWriter transform_writer(trans_wspecifier);
BaseFloatVectorWriter weights_writer;
if (!weights_out_filename.empty()) {
weights_writer.Open(weights_out_filename);
}
int32 num_done = 0, num_no_post = 0, num_other_error = 0;
if (spk2utt_rspecifier != "") { // per-speaker adaptation
SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
FmllrDiagGmmAccs spk_stats(am_gmm.Dim());
string spk = spk2utt_reader.Key();
const vector<string> &uttlist = spk2utt_reader.Value();
for (size_t i = 0; i < uttlist.size(); i++) {
std::string utt = uttlist[i];
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "Did not find features for utterance " << utt;
num_other_error++;
continue;
}
if (!gpost_reader.HasKey(utt)) {
KALDI_WARN << "Did not find posteriors for utterance " << utt;
num_no_post++;
continue;
}
const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
const GaussPost &gpost = gpost_reader.Value(utt);
if (static_cast<int32>(gpost.size()) != feats.NumRows()) {
KALDI_WARN << "GaussPost has wrong size " << (gpost.size())
<< " vs. " << (feats.NumRows());
num_other_error++;
continue;
}
AccumulateForUtterance(feats, gpost, trans_model, am_gmm, &spk_stats);
num_done++;
} // end looping over all utterances of the current speaker
double impr, spk_tot_t; int32 wgt_size;
{
// Compute the transform and write it out.
Matrix<BaseFloat> transform(am_gmm.Dim(), am_gmm.Dim() + 1);
transform.SetUnit();
Vector<BaseFloat> weights;
impr = basis_est.ComputeTransform(spk_stats, &transform,
&weights, basis_fmllr_opts);
spk_tot_t = spk_stats.beta_;
wgt_size = weights.Dim();
transform_writer.Write(spk, transform);
// Optionally write out the base weights
if (!weights_out_filename.empty() && weights.Dim() > 0)
weights_writer.Write(spk, weights);
}
KALDI_LOG << "For speaker " << spk << ", auxf-impr from Basis fMLLR is "
<< (impr / spk_tot_t) << ", over " << spk_tot_t << " frames, "
<< "the top " << wgt_size << " basis elements have been used";
tot_impr += impr;
tot_t += spk_tot_t;
} // end looping over speakers
} else { // per-utterance adaptation
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
if (!gpost_reader.HasKey(utt)) {
KALDI_WARN << "Did not find posts for utterance " << utt;
num_no_post++;
continue;
}
const Matrix<BaseFloat> &feats = feature_reader.Value();
const GaussPost &gpost = gpost_reader.Value(utt);
if (static_cast<int32>(gpost.size()) != feats.NumRows()) {
KALDI_WARN << "GaussPost has wrong size " << (gpost.size())
<< " vs. " << (feats.NumRows());
num_other_error++;
continue;
}
FmllrDiagGmmAccs spk_stats(am_gmm.Dim());
AccumulateForUtterance(feats, gpost, trans_model, am_gmm, &spk_stats);
num_done++;
BaseFloat impr, utt_tot_t; int32 wgt_size;
{ // Compute the transform and write it out.
Matrix<BaseFloat> transform(am_gmm.Dim(), am_gmm.Dim()+1);
transform.SetUnit();
Vector<BaseFloat> weights;
impr = basis_est.ComputeTransform(spk_stats, &transform,
&weights, basis_fmllr_opts);
utt_tot_t = spk_stats.beta_;
wgt_size = weights.Dim();
transform_writer.Write(utt, transform);
// Optionally write out the base weights
if (!weights_out_filename.empty() && weights.Dim() > 0)
weights_writer.Write(utt, weights);
}
KALDI_LOG << "For utterance " << utt << ", auxf-impr from Basis fMLLR is "
<< (impr / utt_tot_t) << ", over " << utt_tot_t << " frames, "
<< "the top " << wgt_size << " basis elements have been used";
tot_impr += impr;
tot_t += utt_tot_t;
} // end looping over all the utterances
}
KALDI_LOG << "Done " << num_done << " files, " << num_no_post
<< " with no posts, " << num_other_error << " with other errors.";
KALDI_LOG << "Overall fMLLR auxf-impr per frame is "
<< (tot_impr / tot_t) << " over " << tot_t << " frames.";
return (num_done != 0 ? 0 : 1);
} catch(const std::exception& e) {
std::cerr << e.what();
return -1;
}
}