Blame view
src/gmmbin/gmm-est-regtree-fmllr.cc
8.51 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
// gmmbin/gmm-est-regtree-fmllr.cc // Copyright 2009-2011 Saarland University; Microsoft Corporation // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "hmm/posterior.h" #include "transform/regtree-fmllr-diag-gmm.h" int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Compute FMLLR transforms per-utterance (default) or per-speaker for " "the supplied set of speakers (spk2utt option). Note: writes RegtreeFmllrDiagGmm objects " "Usage: gmm-est-regtree-fmllr [options] <model-in> <feature-rspecifier> " "<posteriors-rspecifier> <regression-tree> <transforms-wspecifier> "; ParseOptions po(usage); string spk2utt_rspecifier; bool binary = true; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("binary", &binary, "Write output in binary mode"); // register other modules RegtreeFmllrOptions opts; opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), regtree_filename = po.GetArg(4), xforms_wspecifier = po.GetArg(5); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); RegtreeFmllrDiagGmmWriter fmllr_writer(xforms_wspecifier); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } RegressionTree regtree; { bool binary; Input in(regtree_filename, &binary); regtree.Read(in.Stream(), binary, am_gmm); } RegtreeFmllrDiagGmm fmllr_xforms; RegtreeFmllrDiagGmmAccs fmllr_accs; fmllr_accs.Init(regtree.NumBaseclasses(), am_gmm.Dim()); double tot_like = 0.0, tot_t = 0; int32 num_done = 0, num_no_posterior = 0, num_other_error = 0; double tot_objf_impr = 0.0, tot_t_objf = 0.0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { string spk = spk2utt_reader.Key(); fmllr_accs.SetZero(); const vector<string> &uttlist = spk2utt_reader.Value(); for (vector<string>::const_iterator utt_itr = uttlist.begin(), itr_end = uttlist.end(); utt_itr != itr_end; ++utt_itr) { if (!feature_reader.HasKey(*utt_itr)) { KALDI_WARN << "Did not find features for utterance " << *utt_itr; continue; } if (!posteriors_reader.HasKey(*utt_itr)) { KALDI_WARN << "Did not find posteriors for utterance " << *utt_itr; num_no_posterior++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(*utt_itr); const Posterior &posterior = posteriors_reader.Value(*utt_itr); if (static_cast<int32>(posterior.size()) != feats.NumRows()) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } BaseFloat file_like = 0.0, file_t = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat prob = pdf_posterior[i][j].second; file_like += fmllr_accs.AccumulateForGmm(regtree, am_gmm, feats.Row(i), pdf_id, prob); file_t += prob; } } KALDI_VLOG(2) << "Average like for this file is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; num_done++; if (num_done % 10 == 0) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); } // end looping over all utterances of the current speaker BaseFloat objf_impr, t; fmllr_accs.Update(regtree, opts, &fmllr_xforms, &objf_impr, &t); KALDI_LOG << "fMLLR objf improvement for speaker " << spk << " is " << (objf_impr/(t+1.0e-10)) << " per frame over " << t << " frames."; tot_objf_impr += objf_impr; tot_t_objf += t; fmllr_writer.Write(spk, fmllr_xforms); } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string key = feature_reader.Key(); if (!posteriors_reader.HasKey(key)) { KALDI_WARN << "Did not find posteriors for utterance " << key; num_no_posterior++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(key); if (static_cast<int32>(posterior.size()) != feats.NumRows()) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } num_done++; BaseFloat file_like = 0.0, file_t = 0.0; fmllr_accs.SetZero(); Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat prob = pdf_posterior[i][j].second; file_like += fmllr_accs.AccumulateForGmm(regtree, am_gmm, feats.Row(i), pdf_id, prob); file_t += prob; } } KALDI_VLOG(2) << "Average like for this file is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; if (num_done % 10 == 0) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); BaseFloat objf_impr, t; fmllr_accs.Update(regtree, opts, &fmllr_xforms, &objf_impr, &t); KALDI_LOG << "fMLLR objf improvement for utterance " << key << " is " << (objf_impr/(t+1.0e-10)) << " per frame over " << t << " frames."; tot_objf_impr += objf_impr; tot_t_objf += t; fmllr_writer.Write(feature_reader.Key(), fmllr_xforms); } } KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior << " with no posteriors, " << num_other_error << " with other errors."; KALDI_LOG << "Overall objf improvement from MLLR is " << (tot_objf_impr/tot_t_objf) << " per frame " << " over " << tot_t_objf << " frames."; KALDI_LOG << "Overall acoustic likelihood was " << (tot_like/tot_t) << " over " << tot_t << " frames."; return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |