Blame view
src/gmmbin/gmm-est.cc
5.21 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
// gmmbin/gmm-est.cc // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "gmm/mle-am-diag-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Do Maximum Likelihood re-estimation of GMM-based acoustic model " "Usage: gmm-est [options] <model-in> <stats-in> <model-out> " "e.g.: gmm-est 1.mdl 1.acc 2.mdl "; bool binary_write = true; MleTransitionUpdateConfig tcfg; MleDiagGmmOptions gmm_opts; int32 mixup = 0; int32 mixdown = 0; BaseFloat perturb_factor = 0.01; BaseFloat power = 0.2; BaseFloat min_count = 20.0; std::string update_flags_str = "mvwt"; std::string occs_out_filename; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("mix-up", &mixup, "Increase number of mixture components to " "this overall target."); po.Register("min-count", &min_count, "Minimum per-Gaussian count enforced while mixing up and down."); po.Register("mix-down", &mixdown, "If nonzero, merge mixture components to this " "target."); po.Register("power", &power, "If mixing up, power to allocate Gaussians to" " states."); po.Register("update-flags", &update_flags_str, "Which GMM parameters to " "update: subset of mvwt."); po.Register("perturb-factor", &perturb_factor, "While mixing up, perturb " "means by standard deviation times this factor."); po.Register("write-occs", &occs_out_filename, "File to write pdf " "occupation counts to."); tcfg.Register(&po); gmm_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } kaldi::GmmFlagsType update_flags = StringToGmmFlags(update_flags_str); std::string model_in_filename = po.GetArg(1), stats_filename = po.GetArg(2), model_out_filename = po.GetArg(3); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary_read; Input ki(model_in_filename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } Vector<double> transition_accs; AccumAmDiagGmm gmm_accs; { bool binary; Input ki(stats_filename, &binary); transition_accs.Read(ki.Stream(), binary); gmm_accs.Read(ki.Stream(), binary, true); // true == add; doesn't matter here. } if (update_flags & kGmmTransitions) { // Update transition model. BaseFloat objf_impr, count; trans_model.MleUpdate(transition_accs, tcfg, &objf_impr, &count); KALDI_LOG << "Transition model update: Overall " << (objf_impr/count) << " log-like improvement per frame over " << (count) << " frames."; } { // Update GMMs. BaseFloat objf_impr, count; BaseFloat tot_like = gmm_accs.TotLogLike(), tot_t = gmm_accs.TotCount(); MleAmDiagGmmUpdate(gmm_opts, gmm_accs, update_flags, &am_gmm, &objf_impr, &count); KALDI_LOG << "GMM update: Overall " << (objf_impr/count) << " objective function improvement per frame over " << count << " frames"; KALDI_LOG << "GMM update: Overall avg like per frame = " << (tot_like/tot_t) << " over " << tot_t << " frames."; } if (mixup != 0 || mixdown != 0 || !occs_out_filename.empty()) { // get pdf occupation counts Vector<BaseFloat> pdf_occs; pdf_occs.Resize(gmm_accs.NumAccs()); for (int i = 0; i < gmm_accs.NumAccs(); i++) pdf_occs(i) = gmm_accs.GetAcc(i).occupancy().Sum(); if (mixdown != 0) am_gmm.MergeByCount(pdf_occs, mixdown, power, min_count); if (mixup != 0) am_gmm.SplitByCount(pdf_occs, mixup, perturb_factor, power, min_count); if (!occs_out_filename.empty()) { bool binary = false; WriteKaldiObject(pdf_occs, occs_out_filename, binary); } } { Output ko(model_out_filename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_gmm.Write(ko.Stream(), binary_write); } KALDI_LOG << "Written model to " << model_out_filename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |