Blame view
src/gmmbin/gmm-fmpe-acc-stats.cc
5.57 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
// gmmbin/gmm-fmpe-acc-stats.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmpe.h" int main(int argc, char *argv[]) { using namespace kaldi; using kaldi::int32; try { const char *usage = "Accumulate stats for fMPE training, using GMM model. Note: this could " "be done using gmm-get-feat-deriv and fmpe-acc-stats (but you'd be computing " "the features twice). Features input should be pre-fMPE features. " " " "Usage: gmm-fmpe-acc-stats [options] <model-in> <fmpe-in> <feature-rspecifier> " "<gselect-rspecifier> <posteriors-rspecifier> <fmpe-stats-out> " "e.g.: " " gmm-fmpe-acc-stats --model-derivative 1.accs 1.mdl 1.fmpe \"$feats\" ark:1.gselect ark:1.post 1.fmpe_stats "; ParseOptions po(usage); bool binary = true; std::string model_derivative_rxfilename; po.Register("binary", &binary, "If true, write stats in binary mode."); po.Register("model-derivative", &model_derivative_rxfilename, "GMM-accs file containing model derivative [note: contains no transition stats]. Used for indirect differential. Warning: this will only work correctly in the case of MMI/BMMI objective function, with non-canceled stats."); po.Read(argc, argv); if (po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), fmpe_rxfilename = po.GetArg(2), feature_rspecifier = po.GetArg(3), gselect_rspecifier = po.GetArg(4), posteriors_rspecifier = po.GetArg(5), stats_wxfilename = po.GetArg(6); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Fmpe fmpe; ReadKaldiObject(fmpe_rxfilename, &fmpe); bool have_indirect = (model_derivative_rxfilename != ""); AccumAmDiagGmm model_derivative; if (have_indirect) ReadKaldiObject(model_derivative_rxfilename, &model_derivative); FmpeStats fmpe_stats(fmpe); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); BaseFloat tot_like = 0.0; // tot like weighted by posterior. int32 num_frames = 0; int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); if (!posteriors_reader.HasKey(key)) { num_err++; KALDI_WARN << "No posteriors for utterance " << key; continue; } const Matrix<BaseFloat> &feat_in = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(key); if (static_cast<int32>(posterior.size()) != feat_in.NumRows()) { KALDI_WARN << "Posterior vector has wrong size " << (posterior.size()) << " vs. "<< (feat_in.NumRows()); num_err++; continue; } if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for key " << key; num_err++; continue; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(key); if (static_cast<int32>(gselect.size()) != feat_in.NumRows()) { KALDI_WARN << "gselect information has wrong size"; num_err++; continue; } num_done++; Matrix<BaseFloat> fmpe_feat(feat_in.NumRows(), feat_in.NumCols()); fmpe.ComputeFeatures(feat_in, gselect, &fmpe_feat); fmpe_feat.AddMat(1.0, feat_in); Matrix<BaseFloat> direct_deriv, indirect_deriv; tot_like += ComputeAmGmmFeatureDeriv(am_gmm, trans_model, posterior, fmpe_feat, &direct_deriv, (have_indirect ? &model_derivative : NULL), (have_indirect ? &indirect_deriv : NULL)); num_frames += feat_in.NumRows(); fmpe.AccStats(feat_in, gselect, direct_deriv, (have_indirect ? &indirect_deriv : NULL), &fmpe_stats); if (num_done % 100 == 0) KALDI_LOG << "Processed " << num_done << " utterances."; } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; KALDI_LOG << "Overall weighted acoustic likelihood per frame is " << (tot_like/num_frames) << " over " << num_frames << " frames."; Output ko(stats_wxfilename, binary); fmpe_stats.Write(ko.Stream(), binary); return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |