Blame view
src/gmmbin/gmm-global-acc-stats-twofeats.cc
6.98 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
// gmmbin/gmm-global-acc-stats-twofeats.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // 2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Accumulate stats for training a diagonal-covariance GMM, two-feature version " "First features are used to get posteriors, second to accumulate stats " "Usage: gmm-global-acc-stats-twofeats [options] <model-in> " "<feature1-rspecifier> <feature2-rspecifier> <stats-out> " "e.g.: gmm-global-acc-stats-twofeats 1.mdl scp:train.scp scp:train2.scp 1.acc "; ParseOptions po(usage); bool binary = true; std::string update_flags_str = "mvw"; std::string gselect_rspecifier, weights_rspecifier; po.Register("binary", &binary, "Write output in binary mode"); po.Register("update-flags", &update_flags_str, "Which GMM parameters will be " "updated: subset of mvw."); po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the #Gaussians accessed on each frame."); po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats " "for each utterance, that's a per-frame weight."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature1_rspecifier = po.GetArg(2), feature2_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); DiagGmm gmm; { bool binary_read; Input ki(model_filename, &binary_read); gmm.Read(ki.Stream(), binary_read); } int32 new_dim = 0; AccumDiagGmm gmm_accs; // will initialize once we know new_dim. // gmm_accs.Resize(gmm, StringToGmmFlags(update_flags_str)); double tot_like = 0.0, tot_weight = 0.0; SequentialBaseFloatMatrixReader feature1_reader(feature1_rspecifier); RandomAccessBaseFloatMatrixReader feature2_reader(feature2_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); int32 num_done = 0, num_err = 0; for (; !feature1_reader.Done(); feature1_reader.Next()) { std::string key = feature1_reader.Key(); if (!feature2_reader.HasKey(key)) { KALDI_WARN << "For utterance " << key << ", second features not present."; num_err++; continue; } const Matrix<BaseFloat> &mat1 = feature1_reader.Value(); const Matrix<BaseFloat> &mat2 = feature2_reader.Value(key); int32 file_frames = mat1.NumRows(); KALDI_ASSERT(mat1.NumRows() == mat2.NumRows()); if (new_dim == 0) { new_dim = mat2.NumCols(); gmm_accs.Resize(gmm.NumGauss(), new_dim, StringToGmmFlags(update_flags_str)); } BaseFloat file_like = 0.0, file_weight = 0.0; // total of weights of frames (will each be 1 unless // --weights option supplied. Vector<BaseFloat> weights; if (weights_rspecifier != "") { // We have per-frame weighting. if (!weights_reader.HasKey(key)) { KALDI_WARN << "No per-frame weights available for utterance " << key; num_err++; continue; } weights = weights_reader.Value(key); if (weights.Dim() != file_frames) { KALDI_WARN << "Weights for utterance " << key << " have wrong dim " << weights.Dim() << " vs. " << file_frames; num_err++; continue; } } if (gselect_rspecifier != "") { if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for utterance " << key; num_err++; continue; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(key); if (gselect.size() != static_cast<size_t>(file_frames)) { KALDI_WARN << "gselect information for utterance " << key << " has wrong size " << gselect.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; SubVector<BaseFloat> data1(mat1, i), data2(mat2, i); const std::vector<int32> &this_gselect = gselect[i]; int32 gselect_size = this_gselect.size(); KALDI_ASSERT(gselect_size > 0); Vector<BaseFloat> loglikes; gmm.LogLikelihoodsPreselect(data1, this_gselect, &loglikes); file_like += weight * loglikes.ApplySoftMax(); loglikes.Scale(weight); for (int32 j = 0; j < loglikes.Dim(); j++) gmm_accs.AccumulateForComponent(data2, this_gselect[j], loglikes(j)); } } else { // no gselect.. Vector<BaseFloat> posteriors; for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; file_like += weight * gmm.ComponentPosteriors(mat1.Row(i), &posteriors); posteriors.Scale(weight); gmm_accs.AccumulateFromPosteriors(mat2.Row(i), posteriors); } } KALDI_VLOG(2) << "File '" << key << "': Average likelihood = " << (file_like/file_weight) << " over " << file_weight <<" frames."; tot_like += file_like; tot_weight += file_weight; num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_weight) << " over " << tot_weight << " (weighted) frames."; WriteKaldiObject(gmm_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs to " << accs_wxfilename; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |